Abstract:
A packaging substrate with conductive structure is provided, including a substrate body having at least one conductive pad on a surface thereof, a stress buffer metal layer disposed on the conductive pad and a thickness of the stress buffer metal layer being 1-20 μm, a solder resist layer disposed on the substrate body and having at least one opening therein for correspondingly exposing a portion of top surface of the stress buffer metal layer, a metal post disposed on a central portion of the surface of the stress buffer metal layer, and a solder bump covering the surfaces of the metal post.
Abstract:
A three dimensional (3D) stacked chip structure with chips having on-chip heat spreader and method of forming are described. A 3D stacked chip structure comprises a first die having a first substrate with a dielectric layer formed on a front surface. One or more bonding pads and a heat spreader may be simultaneously formed in the dielectric layer. The first die is bonded with corresponding bond pads on a surface of a second die to form a stacked chip structure. Heat generated in the stacked chip structure may be diffused to the edges of the stacked chip structure through the heat spreader.
Abstract:
A method and device having chip scale MEMS packaging is described. A first substrate includes a MEMS device and a second substrate includes an integrated circuit. The frontside of the first substrate is bonded to the backside of the second substrate. Thus, the second substrate provides a cavity to encase, protect or operate the MEMS device within. The bond may provide an electrical connection between the first and second substrate. In an embodiment, a through silicon via is used to carry the signals from the first substrate to an I/O connection on the frontside of the second substrate.
Abstract:
A semiconductor structure includes a first die comprising a first substrate and a first bonding pad over the first substrate, a second die having a first surface and a second surface opposite the first surface, wherein the second die is stacked on the first die and a protection layer having a vertical portion on a sidewall of the second die, and a horizontal portion extending over the first die.
Abstract:
A semiconductor package substrate structure and a manufacturing method thereof are disclosed. The structure includes a substrate having a plurality of electrical connecting pads formed on at least one surface thereof; a plurality of electroplated conductive posts each covering a corresponding one of the electrical connecting pads and an insulating protective layer formed on the surface of the substrate and having a revealing portion for exposing the electroplated conductive posts therefrom. The invention allows the interval between the electroplated conductive posts to be minimized, the generation of concentrated stresses and the overflow of underfill to be avoided, as well as the reduction of the overall height of the fabricated package.
Abstract:
The formation of a seal ring in a semiconductor integrated circuit (IC) die is described. Through-silicon vias (TSVs) are typically formed in a semiconductor IC die to facilitate the formation of a three dimensional (3D) stacking die structure. The TSVs may be utilized to provide electrical connections between components in different dies of the 3D stacking die structure. A seal ring is formed in the inter-metal dielectric (IMD) layers of an IC die, enclosing an active circuit region. The real ring is formed prior to the formation of the TSVs, preventing moistures or other undesired chemical agents from diffusing into the active circuit region during the subsequent processes of forming TSVs.
Abstract:
A semiconductor structure includes a first die comprising a first substrate and a first bonding pad over the first substrate, a second die having a first surface and a second surface opposite the first surface, wherein the second die is stacked on the first die and a protection layer having a vertical portion on a sidewall of the second die, and a horizontal portion extending over the first die.
Abstract:
A semiconductor structure includes a first die comprising a first substrate and a first bonding pad over the first substrate, a second die having a first surface and a second surface opposite the first surface, wherein the second die is stacked on the first die and a protection layer having a vertical portion on a sidewall of the second die, and a horizontal portion extending over the first die.
Abstract:
A method of forming a semiconductor device having a through-silicon via (TSV) is provided. A semiconductor device is provided having a first dielectric layer formed thereon. One or more dielectric layers are formed over the first dielectric layer, such that each of the dielectric layers have a stacking structure, wherein the stacking structures in the one or more dielectric layers are vertically aligned. The stacking structures may be, for example, metal rings. The stacking structures are then removed to form a first recess. A second recess is formed by extending the first recess into the substrate. The second recess is filled with a conductive material to form the TSV.
Abstract:
Methods for thinning a bumped semiconductor wafer, as well as methods for producing flip-chips of very thin profiles, are disclosed. According to the methods of the present invention, a mold compound is interspersed between conductive bumps on the active face of a wafer to provide support and protection for the wafer structure both during and after a process of removing the wafer's inactive back side silicon surface. The mold compound also serves to preserve the integrity of the conductively bumped aspects of the wafer during subsequent processing and may, after the wafer is diced, act as all or part of an underfill material for flip-chip applications.