Abstract:
An electronic structure including a metallic interlocking structure for bonding a conductive plated layer to metal surface, and a method of forming the electronic structure. The method provides a substrate having a metallic sheet within a dielectric layer. The metallic sheet includes a metal such as copper. An opening in the substrate, such as a blind via, is formed by laser drilling through the dielectric layer and partially through the metallic sheet. If the opening is a blind via, then the laser drilling is within an outer ring of the blind via cross section using a laser beam having a target diameter between about 20% and about 150% of a radius of the blind via cross section. A surface at the bottom of the opening, called a nullblind surface,null includes a metallic protrusion formed by the laser drilling, such that the metallic protrusion is integral with a portion of the blind surface. The metallic protrusion includes the metal of the metallic sheet and at least one constituent element from the dielectric layer. The metallic protrusion is then etched to form a metallic interlocking structure that is integral with the portion of the blind surface. The metallic interlocking structure includes discrete metallic fibers, with each metallic fiber having a curved (or curled) geometry. Each metallic fiber has its own unique composition that includes the metal, at least one constituent element of the dielectric layer, or both.
Abstract:
A multilayer printed circuit board and a corresponding fabrication method are disclosed, which circuit board achieves a relatively high degree of wiring density and a relatively high degree of wiring design freedom. These advantages are obtained in the inventive printed circuit board by electrically connecting power conductors or ground conductors using through holes. On the other hand, signal conductors in any two adjacent signal wiring layers are electrically connected using via holes extending only through an intervening electrically insulating layer. Preferably, the electrically insulating layer is a layer of photosensitive resin and the via holes are formed using conventional photolithographic techniques.
Abstract:
A wiring board provided with a line 1, a shield pattern 2 formed in parallel with the line 1, a conductor layer 4 formed so as to face the line 1 and the shield pattern 2 through an insulating layer 3, a conductor layer 6 formed so as to face the line 1 and the shield pattern 2 through an insulating layer 5, and conductive pillars 7a, 7b for connecting the conductor layer 4 to the conductor layer 6. The conductive pillars 7a, 7b are connected to each other through the shield pattern 2. In the above structure, by supplying the ground potential to the shield pattern 2, conductor layers 4, 6, and conductive pillars 7a, 7b, an electromagnetic field is blocked in the direction where the line 1 extends over 360° about the line 1.
Abstract:
A printed wiring board comprises an insulating layer having a plurality of recesses formed along a predetermined edge portion of the insulating layer to extend through a side surface of the insulating layer, tabs for establishing electrical connection with an external electronic apparatus and which are formed on a surface of the insulating layer along the predetermined edge portion in correspondence with the plurality of recesses, and extensions connected electrically to the respective tabs and extending into the respective recesses. The printed wiring board may further comprise a plurality of dummy pads which are buried under the insulating layer in correspondence with the tabs and the extensions and which are electrically insulated from each other. The extensions are joined to the dummy pads through the recesses. The resulting board comprises a structure in which tabs are not easily peeled from an insulating layer.
Abstract:
A mounting structure of a semiconductor package can improve resistance against thermal and mechanical external force. The mounting structure of a semiconductor package establishes electrical connection of a pad on a printing circuit board to a connection wiring by soldering the semiconductor package. The pad may be integrally formed with a via. The soldering may be performed by penetrating a part of solder within the via so that the connection wiring is connected to the pad through the via at a layer different from a layer of the pad.
Abstract:
An object of the invention is to prevent dent faults generated during bonding of an outer copper foil layer onto an inner layer substrate having a through hole or a cavity serving as an interlayer electrical connection means such as an interstitial via hole (IVH) or a blind via hole (BVH). In order to attain the object, there is provided a method for producing a copper-clad laminate employing the following copper foil serving as an outer layer: (1) a resin-coated copper foil being formed of copper foil having a thickness of 15 nullm or more and a rupture strength of 275 kN/m2 or more as measured through a bulge test performed after the foil is heated, wherein the resin-coated copper foil has a resin layer on one side of the copper foil; (2) a copper foil with etchable carrier, wherein the total thickness of the carrier layer and the copper foil layer is 20 nullm or more; or (3) a copper foil with peelable carrier, wherein the total thickness of the carrier layer and the copper foil layer is 20 nullm or more, the releasing layer formed between the carrier layer and the copper foil layer having a peel strength of 5 gf/cm to 300 gf/cm as measured after heating.
Abstract:
A method for making a multi-layer electronic circuit board 136 having electroplated apertures 96, 98 which may be selectively and electrically isolated from an electrically grounded member 46 and further having selectively formed air bridges and/or crossover members 128 which are structurally supported by material 134.
Abstract:
A multilayer wiring board comprises: a metal substrate as a core, a condenser dielectric layer formed to cover the metal layer, and a condenser electrode metal layer formed to cover the condenser dielectric layer, so that a condenser is defined by the metal substrate, the condenser and the condenser electrode metal layer. The condenser dielectric layer is provided with a first contact hole to communicate with the metal substrate and the condenser electrode metal layer is provided with a second contact hole to communicate with the first contact hole, the diameter of the second contact hole being larger than that of the first contact hole. An insulating layer is formed on the condenser electrode metal layer and is provided with a via hole to communicate with the metal substrate through the second and first contact holes. A metal substrate contact metal layer formed on an inner wall of the via hole, so that the metal substrate contact metal layer comes into electrical contact with the metal substrate.
Abstract:
A method for making a multi-layer circuit board 116 having apertures 96, 98 which may be selectively and electrically isolated from electrically grounded member 46 and further having selectively formed air bridges and/or crossover members 104 which are structurally supported by material 112. Each of the apertures 96, 98 selectively receives electrically conductive material 114.