摘要:
A method of fabricating a substrate via structure in a substrate/chip assembly includes steps of: disposing a center via stack for electrical interconnects in the substrate/chip assembly; and providing a plurality of stacked vias surrounding the center via stack. The plurality of stacked vias encircle the center via stack, resulting in no isolated via stacks on the structure. The plurality of stacked vias have both functional and non-functional vias.
摘要:
Thermal deformation of a substrate and the substrate's warp at room temperature are used to determine the expected profile of the substrate at reflow. A contact surface profile of a coining pressure plate is selected based on the expected substrate profile. A solder surface is shaped on the substrate or a die to be joined to the substrate by the coining pressure plate, thereby facilitating the chip-joining process.
摘要:
A method of fabricating a substrate via structure in a substrate/chip assembly includes steps of: disposing a center via stack for electrical interconnects in the substrate/chip assembly; and providing a plurality of stacked vias surrounding the center via stack. The plurality of stacked vias encircle the center via stack, resulting in no isolated via stacks on the structure. The plurality of stacked vias have both functional and non-functional vias.
摘要:
A stacked via structure for reducing vertical stiffness includes: a plurality of stacked vias, each via disposed on a disc-like structure. The disc-like structure includes a platted through hole landing supporting the plurality of stacked vias. The platted through hole landing includes a compliant center zone; and spring-like stiffness-reducing connectors for connecting the compliant center zone of the platted through hole landing.
摘要:
A method and a surface mount technology (SMT) pad structure are provided for implementing enhanced solder joint robustness. The SMT pad structure includes a base SMT pad. The base SMT pad receives a connector for soldering to the SMT pad structure. A standoff structure having a selected geometry is defined on the base SMT pad to increase thickness of the solder joint for the connector.
摘要:
A method of mounting an electronic component on a substrate includes forming at least one trench in a surface of the substrate. The trenches formed in the substrate reduce a stiffness of the substrate, which provides less resistance to shear. Accordingly, the trenches reduce the amount of strain on the joints, which mount the electronic component to the substrate, which enhances the life of the joints.
摘要:
An arrangement for the equipping of electronic packages with elliptical C4 connects possessing optimal orientation for enhanced reliability. Furthermore, disclosed is a method providing elliptical C4 connects which possesses optimal orientation for enhanced reliability, as implemented in connection with their installation in electronic packages. Employed are essentially elliptical solder pads or elliptical C4 pad configurations at various preferably corner locations on a semiconductor chip.
摘要:
An electronic module including a substrate having at least one structure that reduces stress flow through the substrate, wherein the structure comprises at least one trench in a surface of the substrate.
摘要:
A method of characterizing an organic substrate including a plurality of circuit layers is provided includes the steps of: receiving an image of the organic substrate, the image including a geometric description of the circuit layers of the substrate; segmenting the substrate into multiple processing regions based, at least in part, on geometric coordinates of circuit structures defined in the image of the substrate; generating a circuit layer image corresponding to a selected one of the processing regions of the substrate; identifying one or more geometric features in the circuit layer image; estimating at least one thermomechanical property of the circuit layer image as a function of the identified geometric features; repeating the steps of receiving an image, generating a circuit layer image, identifying one or more geometric features in the circuit layer image, and estimating at least one thermomechanical property of the circuit layer image until all circuit layers in the substrate have been processed; and generating a 3-D representation of the selected one of the processing regions of the substrate including the plurality of circuit layer images as a function of the at least one thermomechanical property of each of the plurality of circuit layer images.