Abstract:
A number of semiconductor chips each include a first main face and a second main face opposite to the first main face. A first encapsulation layer is applied over the second main faces of the semiconductor chips. An electrical wiring layer is applied over the first main faces of the first semiconductor chips. A second encapsulation layer is applied over the electrical wiring layer. The thickness of the first encapsulation layer and the thicknesses of the first semiconductor chips is reduced. The structure can be singulated to obtain a plurality of semiconductor devices.
Abstract:
A semiconductor package is manufactured by providing a semiconductor die with a terminal at a first side of the die, providing a material coupled to the die at an opposing second side of the die and embedding the die in a molding compound so that the die is covered by the molding compound on all sides except the first side. The molding compound is thinned at a side of the molding compound adjacent the second side of the die, to expose the material at the second side of the die without exposing the second side of the die. An electrical connection is formed to the terminal at the first side of the die. In the case of a transistor die, the terminal can be a source terminal and the transistor die can be attached source-down to a metal block such as a die paddle of a lead frame.
Abstract:
A semiconductor package is manufactured by providing a semiconductor die with a terminal at a first side of the die, providing a material coupled to the die at an opposing second side of the die and embedding the die in a molding compound so that the die is covered by the molding compound on all sides except the first side. The molding compound is thinned at a side of the molding compound adjacent the second side of the die, to expose the material at the second side of the die without exposing the second side of the die. An electrical connection is formed to the terminal at the first side of the die. In the case of a transistor die, the terminal can be a source terminal and the transistor die can be attached source-down to a metal block such as a die paddle of a lead frame.
Abstract:
A method of forming a chip arrangement is provided. The method includes: arranging a plurality of stacks on a carrier, each stack including a thinned semiconductor chip, a further layer, and a polymer layer between the further layer and the chip, each stack being arranged with the chip facing the carrier; joining the plurality of stacks with each other with an encapsulation material to form the chip arrangement; exposing the further layer; and forming a redistribution layer contacting the chips of the chip arrangement.
Abstract:
A semiconductor package includes a semiconductor die having a sensor structure disposed at a first side of the semiconductor die, and a first port extending through the semiconductor die from the first side to a second side of the semiconductor die opposite the first side, so as to provide a link to the outside environment. Corresponding methods of manufacture are also provided.
Abstract:
A system and method of manufacturing a system are disclosed. An embodiment of the system includes a first packaged component comprising a first component and a first redistribution layer (RDL) disposed on a first main surface of the first packaged component, wherein the first RDL includes first pads. The system further includes a second packaged component having a second component disposed at a first main surface of the second packaged component, the first main surface having second pads and a connection layer between the first packaged component and the second packaged component, wherein the connection layer connects a first plurality of the first pads with the second pads.
Abstract:
A semiconductor device includes a microelectromechanical system (MEMS) die, an encapsulation material, a via element, a non-conductive lid, and a conductive layer. The encapsulation material laterally surrounds the MEMS die. The via element extends through the encapsulation material. The non-conductive lid is over the MEMS die and defines a cavity. The conductive layer is over the MEMS die and the encapsulation material and is electrically coupled to the via element.
Abstract:
According to various embodiments, a package arrangement may include: a first encapsulation material; at least one electronic circuit at least partially embedded in the first encapsulation material, the at least one electronic circuit including a first contact pad structure at a first side of the at least one electronic circuit; at least one electromechanical device disposed over the first side of the at least one electronic circuit, the at least one electromechanical device including a second contact pad structure facing the first side of the at least one electronic circuit; a redistribution layer structure between the at least one electromechanical device and the at least one electronic circuit, the redistribution layer structure electrically connecting the first contact pad structure with the second contact pad structure, wherein a gap is provided between the at least one electromechanical device and the redistribution layer structure; a second encapsulation material at least partially covering the at least one electromechanical device, wherein the gap is free of the second encapsulation material.
Abstract:
A system and method of manufacturing a system are disclosed. An embodiment of the system includes a first packaged component comprising a first component and a first redistribution layer (RDL) disposed on a first main surface of the first packaged component, wherein the first RDL includes first pads. The system further includes a second packaged component having a second component disposed at a first main surface of the second packaged component, the first main surface having second pads and a connection layer between the first packaged component and the second packaged component, wherein the connection layer connects a first plurality of the first pads with the second pads.
Abstract:
A method of packaging integrated circuits includes providing a molded substrate that has a plurality of first semiconductor dies and a plurality of second semiconductor dies laterally spaced apart from one another and covered by a molding compound. The molding compound is thinned to expose at least some of the second semiconductor dies. The exposed second semiconductor dies are removed to form cavities in the molded substrate. A plurality of third semiconductor dies are inserted in the cavities formed in the molded substrate, and electrical connections are formed to the first semiconductor dies and to the third semiconductor dies.