Abstract:
A film forming method of forming a carbon film includes: cleaning an interior of a processing container by using oxygen-containing plasma in a state in which no substrate is present inside the processing container; subsequently, extracting and removing oxygen inside the processing container by using plasma in the state in which no substrate is present inside the processing container; and subsequently, loading a substrate into the processing container and forming the carbon film on the substrate through plasma CVD using a processing gas including a carbon-containing gas, wherein the cleaning, the extracting and removing the oxygen, and the forming the carbon film are repeatedly performed.
Abstract:
There is provided a selective film forming method, comprising a first step of preparing a work piece having a plurality of recesses; a second step of forming a boron-based film having a first predetermined film thickness in a portion of the work piece other than the recesses by plasma CVD; and a third step of etching a side surface of the formed boron-based film having the first predetermined film thickness, wherein the boron-based film is formed in the portion of the work piece other than the recesses in a self-aligned and selective manner.
Abstract:
There is provided a method of forming a boron film on a substrate on which a semiconductor device is formed, by plasmarizing a reaction gas containing a boron-containing gas under a process atmosphere regulated to a pressure which falls within a range of 0.67 to 33.3 Pa (5 to 250 mTorr). The boron film is formed on a substrate on which a semiconductor device is formed, by plasmarizing a reaction gas containing a boron-containing gas under a process atmosphere regulated to a pressure which falls within a range of 0.67 to 33.3 Pa (5 to 250 mTorr).
Abstract:
Provided is a doping method for doping by injecting a dopant into a processing target substrate. According to this doping method, a value of bias electric power supplied during a plasma doping processing is set to a predetermined value on premise of a washing processing to be performed after a plasma doping, and plasma is generated within a processing vessel using microwaves so as to perform the plasma doping processing on the processing target substrate hold on a holding pedestal in the processing vessel.
Abstract:
The method for fabricating a semiconductor device is to fabricate a semiconductor device including GaN (gallium nitride) that composes a semiconductor layer and includes a step of forming a gate insulating film. In the step, at least one film selected from the group consisting of a SiO2 film and an Al2O3 film is formed on a nitride layer containing GaN by using microwave plasma and the formed film is used as at least a part of the gate insulating film.
Abstract translation:制造半导体器件的方法是制造包括构成半导体层的GaN(氮化镓)的半导体器件,并且包括形成栅极绝缘膜的步骤。 在该步骤中,通过使用微波等离子体在包含GaN的氮化物层上形成选自由SiO 2膜和Al 2 O 3膜构成的组中的至少一种膜,并且所形成的膜用作栅极绝缘膜的至少一部分。
Abstract:
A liquid circulation system according to an aspect of the present disclosure is for recovering an ionic liquid supplied into a vacuum chamber and returning the recovered ionic liquid back again into the vacuum chamber, and includes a storage tank having an opening communicating with an inside of the vacuum chamber and configured to store the ionic liquid recovered from the inside of the vacuum chamber through the opening, a viscosity pump provided below the storage tank in a vertical direction, and a pipe configured to supply the ionic liquid inside the storage tank into the vacuum chamber.
Abstract:
A vacuum processing apparatus includes a decompressable process container; a supply port configured to supply, to the process container, an ionic liquid that absorbs an oxidizing gas; and a discharge port configured to discharge the ionic liquid supplied to the process container. A recess is provided at a joint portion between members constituting the process container. The supply port is configured to supply the ionic liquid to the recess, and the discharge port is configured to discharge the ionic liquid supplied to the recess.
Abstract:
A substrate processing method includes forming a film of an ionic liquid on a surface of a substrate, on which a pattern is formed, by supplying the ionic liquid to the surface of the substrate, wherein the ionic liquid has a cation containing a hydrocarbon chain having six or more carbon atoms, and wherein at least one hydrogen atom in the hydrocarbon chain is substituted with a fluorine atom.
Abstract:
An electrocaloric effect element includes a container having a first wall and a second wall, the second wall facing the first wall, ionic liquid accommodated in the container, a first electrode provided at an outer surface of the first wall, and a movable electrode provided in the ionic liquid such that the movable electrode is movable in the ionic liquid.
Abstract:
An apparatus for processing a substrate by supplying a processing gas to the substrate in a processing container. The apparatus comprises: a mounting table provided in the processing container and for mounting the substrate; a gas shower head comprising a gas diffusion space provided at a position facing the mounting table and for diffusing the processing gas, and a shower plate having a plurality of gas supply holes for supplying the processing gas diffused in the gas diffusion space to the processing container; a gas supply portion provided to supply the processing gas to the gas diffusion space and having a flow rate adjusting portion for the processing gas; a pressure sensor portion provided in the gas diffusion space and to output a pressure signal corresponding to a pressure measurement value in the gas diffusion space; and a controller to output a control signal for adjusting a flow rate of the processing gas.