Abstract:
A semiconductor device includes a first single crystal silicon layer including first transistors, a first alignment mark, and at least one metal layer overlying the first single crystal silicon layer for interconnecting the first transistors; a second layer overlying the at least one metal layer, wherein the second layer includes a plurality of second transistors; and a connection path connecting the first transistors and the second transistors and including at least a first strip, a second strip, and a through via connecting the first strip and the second strip, wherein the second strip is substantially orthogonal to the first strip and wherein the through via is substantially away from both ends of the first strip and both ends of the second strip.
Abstract:
A semiconductor device includes a first mono-crystallized layer including first transistors, and a first metal layer forming at least a portion of connections between the first transistors; and a second layer including second transistors, the second transistors including mono-crystalline material, the second layer overlying the first metal layer, wherein the first metal layer includes aluminum or copper, and wherein the second layer is less than one micron in thickness and includes logic cells.
Abstract:
A system includes a semiconductor device. The semiconductor device includes a first single crystal silicon layer comprising first transistors, first alignment marks, and at least one metal layer overlying the first single crystal silicon layer, wherein the at least one metal layer comprises copper or aluminum more than other materials; and a second single crystal silicon layer overlying the at least one metal layer. The second single crystal silicon layer comprises a plurality of second transistors arranged in substantially parallel bands. Each of a plurality of the bands comprises a portion of the second transistors along an axis in a repeating pattern.
Abstract:
A method is presented that may be used to provide a Configurable Logic device, which may be Field Programmable with volume flexibility. A method of fabricating an integrated circuit may include the steps of: providing a semiconductor substrate and forming a borderless logic array, and it may also include the step of forming a plurality of antifuse configurable interconnect circuits and/or a plurality of transistors to configure at least one antifuse. The programming transistors may be fabricated over the at least one antifuse.
Abstract:
A 3D semiconductor device, including: a first layer including first transistors; a first interconnection layer interconnecting the first transistors and includes aluminum or copper; a second layer including second transistors; where the second transistors are aligned to the first transistors with a less than 40 nm alignment error, and where the second layer is overlying the first interconnection layer, and where at least one of the second transistors has a back-bias structure designed to modify the performance of at least one of the second transistors.
Abstract:
A semiconductor device includes a first mono-crystallized layer including first transistors, and a first metal layer forming at least a portion of connections between the first transistors; and a second layer including second transistors, the second transistors including mono-crystalline material, the second layer overlying the first metal layer, wherein the first metal layer includes aluminum or copper, and wherein the second layer is less than one micron in thickness and includes logic cells.
Abstract:
A semiconductor device including: a first mono-crystal layer and a second mono-crystal layer and at least one conductive layer in-between; where the at least one conductive layer includes a first conductive layer overlaying a second conductive layer overlying a third conductive layer, and where the second conductive layer having a predetermined second layer current carrying capacity greater than the current carrying capacity of the first conductive layer, and the second conductive layer current carrying capacity being greater than the current carrying capacity of the third conductive layer.
Abstract:
A device including a first layer of first transistors interconnected by at least one first interconnection layer, wherein the first interconnection layer includes copper or aluminum, a second layer including second transistors, the second layer overlaying the first interconnection layer, wherein the second layer is less than 2 micron thick, wherein the second layer has a coefficient of thermal expansion; and a connection path connecting at least one of the second transistors to the first interconnection layer, wherein the connection path includes at least one through-layer via, and wherein the through-layer via includes material whose co-efficient of thermal expansion is within 50 percent of the second layer coefficient of thermal expansion.
Abstract:
A 3D IC based system including: a first semiconductor layer including first alignment marks and first transistors, wherein the first transistors are interconnected by at least one metal layer including aluminum or copper; a second mono-crystallized semiconductor layer including second transistors and overlaying the at least one metal layer, wherein the at least one metal layer is in-between the first semiconductor layer and the second mono-crystallized semiconductor layer; and wherein the second transistors include a plurality of N-type transistors and P-type transistors, and wherein the second mono-crystallized semiconductor layer is transferred from a reusable donor wafer.
Abstract:
A system includes a semiconductor device. The semiconductor device includes a first semiconductor layer comprising first transistors, wherein the first transistors are interconnected by at least one metal layer comprising aluminum or copper. The second mono-crystallized semiconductor layer includes second transistors and is overlaying the at least one metal layer, wherein the second mono-crystallized semiconductor layer is less than 150 nm in thickness, and at least one of the second transistors is an N-type transistor and at least one of the second transistors is a P-type transistor.