Abstract:
Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency of the engine.
Abstract:
A novel apparatus and method is disclosed for a plasmatron fuel converter (“plasmatron”) that efficiently uses electrical energy to produce hydrogen rich gas. The plasmatron has multiple decoupled gas flow apertures or channels for performing multiple functions including fuel atomization, wall protection, plasma shaping, and downstream mixing. In one aspect, the invention is a plasmatron fuel converter comprising a first electrode and a second electrode separated from the first electrode by an electrical insulator and disposed to create a gap with respect to the first electrode so as to form a discharge region adapted to receive a reactive mixture. A power supply is connected to the first and second electrodes and adapted to provide voltage and current sufficient to generate a plasma discharge within the discharge region. Fluid flows are established in the vicinity of the plasma discharge region by multiple decoupled flow establishing means.
Abstract:
Fuel management system for operation of a spark ignition gasoline engine. The system includes a gasoline engine powering the vehicle and a source of gasoline for introduction into the engine. A source of an anti-knock fuel such as ethanol is provided. An injector directly injects the anti-knock fuel into a cylinder of the engine and the control system shuts down the engine by stopping gasoline and anti-knock agent flow into the engine during vehicle deceleration and idling and restarts the engine upon driver demand. Direct ethanol injection and engine shutdown results in efficiencies similar to those of full hybrid vehicles.
Abstract:
A novel apparatus and method is disclosed for a plasmatron fuel converter (“plasmatron”) that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.
Abstract:
Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NOx.
Abstract:
A hydrogen enhanced gasoline engine system using high compression ratio is optimized to minimize NOx emissions, exhaust aftertreatment catalyst requirements, hydrogen requirements, engine efficiency and cost. In one mode of operation the engine is operated very lean (equivalence ratio ø=0.4 to 0.7) at lower levels of power. Very lean operation reduces NOx to very low levels. A control system is used to increase equivalence ratio at increased torque or power requirements while avoiding the knock that would be produced by high compression ratio operation. The increased equivalence ratio reduces the amount of hydrogen required to extend the lean limit in order to avoid misfire and increases torque and power. The engine may be naturally aspirated, turbocharged, or supercharged.
Abstract:
The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical characteristics capable of maintaining optimal joule heating and glass forming properties during the conversion process.
Abstract:
An integrated plasmatron-turbine system which is capable of producing and utilizing clean burning hydrogen-rich gas is provided. The system may be incorporated into vehicles, stationary turbines, and the like to reduce emissions. The system may also be used to generate electricity in a power generating station. The system includes a plasmatron which reforms fuel into a hydrogen-rich gas and a turbine driven by the hydrogen-rich gas jet from the plasmatron. The turbine converts the heat and kinetic energy of the hydrogen-rich gas into electricity using an alternator. The alternator provides electricity to the plasmatron and may also be used to charge a battery for plasmatron initiation. Additional electricity may be used for other needs of the vehicle or stationary turbine. The hydrogen-rich gas can then utilized as clean burning fuel in a combustor coupled into the same turbine, in a second turbine or in an internal combustion engine.
Abstract:
A method and portable apparatus for self-powered, sensitive analysis of solid, liquid or gas samples for the presence of elements is provided. The apparatus includes a compact sensor system which utilizes a microwave power source and a shorted waveguide to induce a plasma. The microwave power source may be a magnetron or the like. The device includes a portable power supply and preferably includes a portable battery charger. The portable power supply includes a compact generator- internal combustion engine unit. The device can be operated by directly using power from the portable power supply or in a more compact embodiment by using power from batteries that are recharged by a separate portable power supply module. Pulsed microwave operation can be used to reduce average power requirements and facilitate the use of very compact units using batteries. The device is capable of being transported to and from remote sites for analysis by an individual without the need for heavy transportation equipment. A computer may be utilized to control the portable power supply, the battery charger and the microwave power source. The method and apparatus are capable of analyzing samples for the presence of several elements simultaneously using fiber optic guides and a spectrometer system. The apparatus can be contained in a plurality of readily detachable modules to facilitate transportation and field operation.
Abstract:
The present invention provides a relatively compact self-powered, tunable waste conversion system and apparatus which has the advantage of highly robust operation which provides complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The system provides the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or by an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment of the invention, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced or without further use of the gases generated by the conversion process. The apparatus may be employed as a self-powered or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production.