Abstract:
An electrical interface on a circuit board is disclosed for electrically connecting the circuit board to a connector to reduce reflections and impedance mismatch and increase power transfer from the connector to the signal path of the circuit board. The signal interface includes a signal conductor including a signal pad configured to connect to a connector pin and a waveguide section extending from the signal pad. The waveguide narrows from a signal pad width to connect to a microstrip conductor. A first ground section is spaced rightward from the signal conductor such that the inner edge of the first ground section, angles in correspondence with the narrowing of the waveguide to generally track an outer right edge of the waveguide. A second ground section is spaced leftward from the signal conductor and configured generally similarly to the first ground section.
Abstract:
Embodiments disclosed herein include receiver optical assemblies (ROAs) having a photo-detector remotely located from a differential transimpedance amplifier (TIA). Related components, circuits, and methods are also disclosed. By providing the photo-detector remotely located from a TIA, additional costs associated with design constraints of providing the photo-detector intimate with a TIA may be avoided, thereby reducing cost of the ROA. In this regard as a non-limiting example, the ROAs according to the embodiments disclosed herein allow shorter haul active optical cable applications for use in consumer applications from a cost standpoint with the added benefits of increased bandwidth and low noise performance of optical fiber. In this regard, the ROAs disclosed herein provide higher input impedance differential TIA circuits and transmission circuits inhibiting or reducing ringing effects and maintain a sufficiently low resistance-capacitance (RC) time constant for differential TIA circuit to allow for higher bandwidth operation of the ROA.
Abstract:
Device, system, and method of three-dimensional printing. A device includes: a first 3D-printing head to selectively discharge conductive 3D-printing material; a second 3D-printing head to selectively discharge insulating 3D-printing material; and a processor to control operations of the first and second 3D-printing heads based on a computer-aided design (CAD) scheme describing a printed circuit board (PCB) intended for 3D-printing. A 3D-printer device utilizes 3D-printing methods, in order to 3D-print: (a) a functional multi-layer PCB; or (b) a functional stand-alone electric component; or (c) a functional PCB having an embedded or integrated electric component, both of them 3D-printed in a unified 3D-printing process.
Abstract:
Off-plane conductive line interconnects may be formed in microelectronic devices. In one example, such as device includes a first set of metal conductive lines in a dielectric substrate at a first horizontal layer of the substrate, a second set of metal conductive lines in the substrate at the first horizontal layer of the substrate and vertically offset from the first set of metal lines, and a dielectric material insulating the metal lines from each other and the first horizontal layer from other horizontal layers. Vias in the dielectric material to connect both the first and second set of metal lines to metal lines at a second horizontal layer of the substrate.
Abstract:
A printed circuit board includes a first layer stack and a second layer stack coupled to the first layer stack. The first layer stack includes a first electrically-insulating layer, a first electrically-conductive layer, and a cut-out area defining a void that extends therethrough. The first electrically-insulating layer includes a first surface and an opposite second surface. The first electrically-conductive layer is disposed on the first surface of the first electrically-insulating layer. The second layer stack includes a second electrically-insulating layer. The second electrically-insulating layer includes a first surface and an opposite second surface. One or more electrically-conductive traces are disposed on the first surface of the second electrically-insulating layer. The printed circuit board further includes a device at least partially disposed within the cut-out area. The device is electrically-coupled to one or more of the one or more electrically-conductive traces disposed on the first surface of the second electrically-insulating layer.
Abstract:
An attenuation reduction structure of a circuit board includes an expanded thickness formed between high frequency signal contact pads and a grounding layer of the circuit board. The expanded thickness is greater than a reference thickness between the grounding layer and high frequency signal lines. The circuit board is made of polyethylene terephthalate (PET) or polyimide (PI). Alternatively, a rigid board including resin and fibrous material or a rigid-flex board is used. The circuit board can be a single-layer circuit board or a multi-layer board formed by combining at least two single-layer circuit boards. A thickness-expanding pad is mounted between the high frequency signal contact pads and the grounding layer or the thickness of a portion of a bonding layer of the circuit board is increased to provide an expanded thickness.
Abstract:
Multi-layer in integrated transmission line circuits are provided having improved signal loss characteristics. A multi-layer integrated transmission line circuit, such as a stripline circuit or a microstrip circuit, comprises at least one reference layer; at least one conducting layer having one or more conducting strips, wherein the at least one conducting layer is separated from the at least one reference layer by a substrate; and at least one additional layer positioned between the at least one conducting layer and the at least one reference layer. The multi-layer integrated transmission line circuit may also comprise a dielectric insulating material, such as an organic material or a ceramic material. The additional layers increase a dielectric thickness of the multi-layer integrated transmission line circuit to reduce dielectric losses.
Abstract:
When laminating two resin films so that sides where the conductive patterns are not formed face each other, and when laminating other resin films so that sides where the conductive patterns are formed and the sides where the conductive patterns are not formed to face each other, a plurality of resin films each of which has the same resin thickness are used for the other resin films, and two resin films having a sum of resin thickness that is the same as the resin thickness of the other single resin film are used for the two resin films. Accordingly, dielectric thicknesses between the conductive patterns formed in the adjoining resin films can be made even so that an impedance can be calculated easily, and it becomes possible to ease the circuit design.
Abstract:
A planarized cover layer structure of a flexible circuit board includes an insulation layer bonded through a first adhesive layer to a surface of each one of conductive signal lines laid on a substrate of a flexible circuit board. Separation areas respectively formed between adjacent ones of the conductive signal lines are each formed with a filling layer, so that the filling layer provides the first adhesive layer with a planarization height in the separation areas and the planarization height is substantially equal to the height of the conductive signal lines. The filling layer can alternatively be of a height that is higher than the surface of the conductor layer by a covering height so that the first adhesive layer has a planarization height in the separation areas and the planarization height is substantially equal to the sum of the height of the conductive signal lines and the covering height.
Abstract:
A printed substrate design system includes: an EMI condition determination unit that compares an EMI characteristic derived by an EMI characteristic derivation unit with an EMI allowable condition, and determines whether the EMI characteristic of a printed substrate satisfies the EMI allowable condition; a substrate configuration change unit that changes an internal configuration of the printed substrate to obtain a changed configuration of the printed substrate in a case where the EMI condition determination unit has determined that the EMI allowable condition is not satisfied, and sets design information of the changed configuration of the printed substrate to design information for deriving the EMI characteristic in the EMI characteristic derivation unit; and an output unit that outputs a printed substrate configuration in a case where the EMI condition determination unit has determined the EMI allowable condition is satisfied.