Abstract:
Stacked dies (110) are encapsulated in an interposer's cavity (304) by multiple encapsulant layers (524) formed of moldable material. Conductive paths (520, 620.3) connect the dies to the cavity's bottom wall (304B) and, through TSVs passing through the bottom wall, to a conductor below the interposer. The conductive paths can be formed in segments each of which is formed in a through-hole (514) in a respective encapsulant layer. Each segment can be formed by electroplating onto a lower segment; the electroplating current can be provided from below the interposer through the TSVs and earlier formed segments. Other features are also provided.
Abstract:
A microelectronic assembly includes a dielectric element having bumps projecting from a first surface thereof, the bumps having end surfaces flush with a planarized encapsulation. A circuit structure having a thickness less than or equal to 10 microns, formed by depositing two or more dielectric layers and conductive layers on the respective dielectric layers, has electrically conductive features thereon which electrically contact the bumps. The circuit structure can be formed separately on a carrier and then joined with the bumps on the dielectric element, or the circuit structure can be formed by a build up process on the planarized surface of the encapsulation and the planarized surfaces of the bumps.
Abstract:
Two microelectronic components (110, 120), e.g. a die and an interposer, are bonded to each other. One of the components' contact pads (110C) include metal, and the other component has silicon (410) which reacts with the metal to form metal silicide (504). Then a hole (510) is made through one of the components to reach the metal silicide and possibly even the unreacted metal (110C) of the other component. The hole is filled with a conductor (130), possibly metal, to provide a conductive via that can be electrically coupled to contact pads (120C.B) attachable to other circuit elements or microelectronic components, e.g. to a printed circuit board.
Abstract:
A combined interposer (120) includes multiple constituent interposers (120.i), each with its own substrate (120.iS) and with a circuit layer (e.g. redistribution layer) on top and/or bottom of the substrate. The top circuit layers can be part of a common circuit layer (120R.T) which can interconnect different interposers. Likewise, the bottom circuit layers can be part of a common circuit layer (120R.B). The constituent interposer substrates (120.iS) are initially part of a common wafer, and the common top circuit layer is fabricated before separation of the constituent interposer substrates from the wafer. Use of separated substrates reduces stress compared to use of a single large substrate. Other features are also provided.
Abstract:
Stacked dies (110) are encapsulated in an interposer's cavity (304) by multiple encapsulant layers (524) formed of moldable material. Conductive paths (520, 623) connect the dies to the cavity's bottom all (304B) and, through TSVs passing through the bottom wall, to a conductor below the interposer. The conductive paths can be formed in segments each of which is formed in a through-hole (514) in a respective encapsulant layer. Each segment can be formed by electroplating onto a lower segment; the electroplating current can be provided from below the interposer through the TSVs and earlier formed segments. Other features are also provided.
Abstract:
A device and method for an integrated device includes a first redistribution layer comprising one or more first conductors, one or more first dies mounted to a first surface of the first redistribution layer and electrically coupled to the first conductors, one or more first posts having first ends attached to the first dies and second ends opposite the first ends, one or more second posts having third ends attached to the first surface of the first redistribution layer and fourth ends opposite the third ends, and a second redistribution layer comprising one or more second conductors, the second redistribution layer being attached to the second ends of the first posts and to the fourth ends of the second posts. In some embodiments, the integrated device further includes a heat spreader mounted to a second surface of the first redistribution layer. The second surface is opposite the first surface.
Abstract:
Semiconductor integrated circuits (110) or assemblies are disposed at least partially in cavities between two interposers (120). Conductive vias (204M) pass through at least one of the interposers or at least through the interposer's substrate, and reach a semiconductor integrated circuit or an assembly. Other conductive vias (204M.1) pass at least partially through multiple interposers and are connected to conductive vias that reach, or are capacitively coupled to, a semiconductor IC or an assembly. Other features are also provided.
Abstract:
A method for making an integrated circuit package includes providing a handle wafer having a first region defining a cavity. A capacitor is formed in the first region. The capacitor has a pair of electrodes, each coupled to one of a pair of conductive pads, at least one of which is disposed on a lower surface of the handle wafer. An interposer having an upper surface with a conductive pad and at least one semiconductor die disposed thereon is also provided. The die has an integrated circuit that is electroconductively coupled to a redistribution layer (RDL) of the interposer. The lower surface of the handle wafer is bonded to the upper surface of the interposer such that the die is disposed below or within the cavity and the electroconductive pad of the handle wafer is bonded to the electroconductive pad of the interposer in a metal-to-metal bond.
Abstract:
Stacked dies (110) are encapsulated in an interposer's cavity (304) by multiple encapsulant layers (524) formed of moldable material. Conductive paths (520, 623) connect the dies to the cavity's bottom all (304B) and, through TSVs passing through the bottom wall, to a conductor below the interposer. The conductive paths can be formed in segments each of which is formed in a through-hole (514) in a respective encapsulant layer. Each segment can be formed by electroplating onto a lower segment; the electroplating current can be provided from below the interposer through the TSVs and earlier formed segments. Other features are also provided.