Abstract:
A method of manufacturing a printed wiring board includes a step of providing a plurality of pierced holes in prescribed positions of a laminate which is formed by adhering electrolytic conductive metal foils on front and rear surfaces of a laminate mainly composed of resin, a step of dipping the laminate completely provided with the pierced holes in unhardened liquid thermosetting resin, a step of removing excessive parts of the thermosetting resin applied onto the front and rear surfaces of the laminate and inner peripheral walls surfaces of the pierced holes, a step of heating and hardening the applied thermosetting resin, a step of removing parts of the thermosetting resin hardened on the conductive metal foils provided on the front and rear surfaces of the laminate, and a step of forming plating layers of a conductive metal on the front and rear surfaces of the laminate and the inner peripheral wall surfaces of the pierced holes. A printed wiring board having an excellent insulation property between through-holes can be manufactured through the aforementioned steps.
Abstract:
A nanocomposite coating composition for use in the mitigation of whisker growth from a metallic surface (82) includes a polymer matrix (86) comprising a base polymer and insulating material nanoplatelets (85), for example clay nanoplatelets, within the polymer matrix (86). A conformal coating (84) for application to a metal surface (82) is formed from the coating composition. The conformal coating mitigates the spontaneous growth of whiskers (83), in particular tin whiskers, from the coated surface (82), reducing the risk of short-circuits caused by such whiskers bridging gaps within electronic devices. Methods are provided for the preparation of coating compositions and coatings.
Abstract:
The disclosed solder alloy is useful for plating and for use with electronic components, which are capable of suppressing the formation of external stress-type whiskers. This solder alloy for plating contains Sn and Ni, with the Ni content being 0.06-5.0 mass % inclusive and the remainder including Sn, and is used in electrical contacts that are electrically connected through mechanical joining.
Abstract:
An arrangement for an electronic device is disclosed. A plurality of electrically conductive pins is positioned in respective vias of the circuit carrier, the pins extend from a first face of the circuit carrier to a contact end in order to electrically contact one or more components. The arrangement is equipped with an electrically insulating layer on a circuit carrier face, which is the first or a second face, in the region of the pin, the insulating layer having a prefabricated element which is positioned on the face of the circuit carrier. A portion of each pin, the portion being arranged adjacently to the respective via on the face, is surrounded by the material of the insulating layer in a continuously lateral manner.
Abstract:
A wiring board includes a base layer, a plurality of connection terminals and a surface layer. The base layer is electrically insulative. The plurality of connection terminals are conductive and formed on the base layer. The surface layer is electrically insulative, and fills gaps between the plurality of connection terminals on the base layer. The connection terminals include a base portion made of a conductive first metal and a coating portion made of a conductive second metal that is different from the first metal. The coating portion penetrates the surface layer, and coats the base portion to the base layer.
Abstract:
A highly thermally conductive printed circuit board prevents electrochemical migration by inhibiting elution of copper ions. The printed circuit board is a metal-base printed circuit board including a metal base plate having an insulating resin layer and a copper foil layer stacked thereon in this order. In the printed circuit board, the insulating resin layer contains a first inorganic filler made of inorganic particles having particle diameters of 0.1 nm to 600 nm with an average particle diameter (D50) of 1 nm to 300 nm, and a second inorganic filler made of inorganic particles having particle diameters of 100 nm to 100 μm with an average particle diameter (D50) of 500 nm to 20 μm, and the first inorganic filler and the second inorganic filler are uniformly dispersed in the insulating resin layer.
Abstract:
An electronic component includes a main body, first and second external electrodes, and a water-repellent film. The first and second external electrodes are provided on a portion of a surface of the main body. The water-repellent film is provided on another portion of the surface of the main body and on a surface of the first external electrode. The water-repellent film contains a non-cross-linked silicone resin. An angle of contact of water of about 25° C. with the water-repellent film is not less than about 100° and not greater than about 160°.
Abstract:
An electronic component includes a main body, first and second external electrodes, and a water-repellent film. The first and second external electrodes are provided on a portion of a surface of the main body. The water-repellent film is provided on another portion of the surface of the main body and on a surface of the first external electrode. The water-repellent film contains a non-cross-linked silicone resin. An angle of contact of water of about 25° C. with the water-repellent film is not less than about 100° and not greater than about 160°.
Abstract:
One aspect of the present invention relates to a circuit board including an insulating base substrate; and a circuit layer that is formed of a conductor and that is provided on the surface of the insulating base substrate, wherein the insulating base substrate has a smooth surface having a surface roughness Ra of 0.5 μm or less, and the conductor is at least partially embedded in a wiring groove formed in the surface of the insulating base substrate.
Abstract:
A tin or tin alloy plating film surface treatment aqueous solution that can reduce whiskers on the surface of a tin or tin alloy plating film, and can provide a favorable tin or tin alloy plating film using a simple method for tin or tin alloy plating films that are used on electronic components.