Abstract:
A component built-in wiring board is provided. The component built-in wiring board 10 includes a core substrate 11, a first component 61, a first built-up layer 31 and a capacitor 101. The core substrate 11 has a housing hole 90 and the first component 61 is housed in the housing hole 90. A component mounting region 20 capable of mounting a second component 21 is provided in a surface 39 of the first built-up layer 31. The capacitor 101 has electrode layers 102 and 103 and a dielectric layer 104. The capacitor 101 is embedded in the first built-up layer 31 such that a first front surface 105 and a second front surface 106 in the electrode layer 102 and a first front surface 107 and a second front surface 108 in the electrode layer 103 are disposed in parallel with the surface 39 of the first built-up layer 31.
Abstract:
A printed circuit board has a core substrate including a resin substrate having an opening, a capacitor formed in the opening and having a first electrode structure having a portion facing to the upper surface of the core substrate and a second electrode structure having a portion facing to the lower surface of the core substrate, an upper insulating layer formed over the upper surface of the core substrate and having a conductive circuit formed over the upper insulating layer and a via hole electrically connecting the portion of the first electrode structure and the conductive circuit of the upper insulating layer, and a lower insulating layer formed over the lower surface of the core substrate and having a conductive circuit formed over the lower insulating layer and a via hole electrically connecting the portion of the second electrode structure and the conductive circuit of the lower insulating layer.
Abstract:
A circuit substrate includes a base layer, a first patterned conductive layer, a dielectric layer, a conductive block and a second patterned conductive layer. The first patterned conductive layer is disposed on the base layer and has a first pad. The dielectric layer is disposed on the base layer and covers the first patterned conductive layer, wherein the dielectric layer has an opening and the first pad is exposed by the opening. The conductive block is disposed in the opening and covers the first pad. The second patterned conductive layer is disposed on a surface of the dielectric layer and has a second pad, wherein the second pad and the conductive block are integrally formed. In addition, a fabricating process of a circuit substrate is also provided.
Abstract:
A device mounting board includes an insulating layer formed of an insulating resin, a glass cloth covering the surface of the insulating layer, and an electrode provided in a through hole extending through the glass cloth. The angle of contact with solder of the glass cloth is larger than that of the resin. Thus, solder bumps are formed on the electrode 14 of the device mounting board 10 with high precision.
Abstract:
According to one embodiment, a television apparatus includes a circuit board, a conductive portion, and an easily broken portion. The circuit board is mounted with an electronic component. The conductive portion is located on a surface or the inside of the circuit board. A breakage detection mechanism detects breakage of the conductive portion by conduction. The easily broken portion is provided to at least part of the conductive portion. The easily broken portion is broken easier than other portions of the conductive portion when a stress is applied to the circuit board.
Abstract:
A printed wiring board is manufactured by a method in which a base substrate having a first insulation layer, a second insulation layer, and a conductive film is provided. An electronic component is placed on the first insulation layer at a position determined based on an alignment mark. After the electronic component is enclosed inside an opening of the second insulation layer, a via hole exposing a terminal of the electronic component is formed at a position determined based on the alignment mark, which is used to determine the position of the electronic component. A via conductor is formed in the via hole, and a conductive layer is formed on the conductive film and patterned to form a conductive circuit connected to the via conductor.
Abstract:
A multilayer printed wiring board includes a core substrate, a resin insulation layer laminated on the core substrate and a capacitor section coupled to the resin insulating layer. The capacitor section includes a first electrode including a first metal and configured to be charged by a negative charge, and a second electrode including a second metal and opposing the first electrode, the second electrode configured to be charged by a positive charge. A dielectric layer is interposed between the first electrode and second electrode, and an ionization tendency of the first metal is larger than and ionization tendency of the second metal.
Abstract:
A semiconductor printed circuit board assembly (PCBA) and method for making same for use in electronic packages having a core layer of copper-invar-copper (CIC) with a layer of dielectric substrate placed on the core layer. A second layer of dielectric substrate is placed on the lower surface of the core layer of CIC. The layers are laminated together. Blind vias are laser drilled into the layers of dielectric substrate. The partially completed PCBA is subjected to a reactive ion etch (RIE) plasma as a first step to clean blind vias in the PCBA. After the plasma etch, an acidic etchant liquid solution is used on the blind vias. Pre-plating cleaning of blind vias removes a majority of oxides from the blind vias. Seed copper layers are then applied to the PCBA, followed by a layer of copper plating that can be etched to meet the requirements of the PCBA.
Abstract:
A package substrate 310 incorporating a substrate provided with a conductor layer 5, a conductive connecting pin 100 arranged to establish the electrical connection with a mother board and secured to the surface of the substrate, wherein a pad 16 for securing the conductive connecting pin is provided for the package substrate 310. The pad 16 is covered with an organic resin insulating layer 15 having an opening 18 through which the pad 16 is partially exposed to the outside. The conductive connecting pin 100 is secured to the pad exposed to the outside through the opening with a conductive adhesive agent 17 so that solution of the conductive connecting pin 100 from the substrate occurring, for example when mounting is performed is prevented.