Abstract:
Provided are semiconductor devices and methods of manufacturing the same. The semiconductor device includes a substrate including a first top surface, a second top surface lower in level than the first top surface, and a first perpendicular surface disposed between the first and second top surfaces, a first source/drain region formed under the first top surface, a first nanowire extended from the first perpendicular surface in one direction and being spaced apart from the second top surface, a second nanowire extended from a side surface of the first nanowire in the one direction, being spaced apart from the second top surface, and including a second source/drain region, a gate electrode on the first nanowire, and a dielectric layer between the first nanowire and the gate electrode.
Abstract:
Provided is a self-pulsating laser diode including: a distributed feedback (DFB) section serving as a reflector; a gain section connected to the DFB section and having an as-cleaved facet at one end; a phase control section interposed between the DFB section and the gain section; and an external radio frequency (RF) input portion applying an external RF signal to at least one of the DFB section and the gain section.
Abstract:
A full 3R (re-timing, re-shaping, re-amplifying) recovery system is provided. In the full 3R recovery system, a self-pulsating laser diode (SP-LD) and an electroabsorption modulator (EAM) are integrated and disposed on a semiconductor substrate.
Abstract:
A method of fabricating quantum wire structures and devices, and quantum dot structures and devices comprise steps of: depositing an insulating layer on a semiconductor substrate, forming a line patterns and a square patterns in an insulating layer, forming a V-grooved patterned structures and a reverse quadrilateral pyramid patterned structures by thermal etching to evaporate portions of the quantum well layer that are not protected by line-shaped mask regions and square-shaped mask regions of the masking layer, forming a quantum wires and a quantum dots by alternatively growing a barrier layer and an active layer on a V-grooved patterned substrate and a reverse quadrilateral pyramid patterned substrate.
Abstract:
Disclosed is a fabricating method of a GaAs substrate having a V-shaped groove in a higher density, that is a double density, the method comprising the steps of forming a Si.sub.3 N.sub.4 layer on a main surface of the GaAs substrate; patterning the Si.sub.3 N.sub.4 layer using a photo-lithography to form a patterned Si.sub.3 N.sub.4 layer having a minimum width; wet-etching the GaAs substrate using the patterned Si.sub.3 N.sub.4 layer as a mask, so as to form (111) and (100) surfaces of the GaAs substrate beneath the patterned Si.sub.3 N.sub.4 ; selectively growing a GaAs film on the GaAs substrate etched thus using the patterned Si.sub.3 N.sub.4 layer as a mask so as to form the GaAs film with two (111) facets only on a (100) surface of the GaAs substrate; and removing the Si.sub.3 N.sub.4 layer. The V-shaped grooves can be formed on a GaAs substrate utilizing a difference of growth rate caused by surface orientation of the substrate, and therefore the grooves can be formed in double density.
Abstract translation:本发明公开了一种GaAs衬底的制造方法,该GaAs衬底具有较高密度的V形沟槽,即双重密度,该方法包括以下步骤:在GaAs衬底的主表面上形成Si 3 N 4层; 使用光刻法构图Si 3 N 4层以形成具有最小宽度的图案化的Si 3 N 4层; 使用图案化的Si 3 N 4层作为掩模对GaAs衬底进行湿法蚀刻,以在图案化的Si 3 N 4之下形成GaAs衬底的(111)和(100)表面; 在GaAs衬底上选择性地生长GaAs膜,使用图案化的Si 3 N 4层作为掩模进行蚀刻,以便仅在GaAs衬底的(100)表面上形成具有两个(111)面的GaAs膜; 并去除Si3N4层。 可以使用由衬底的表面取向引起的生长速度差,在GaAs衬底上形成V形槽,因此可以以双重密度形成沟槽。
Abstract:
The present disclosure relates to a nitride electronic device and a method for manufacturing the same, and particularly, to a nitride electronic device and a method for manufacturing the same that can implement various types of nitride integrated structures on the same substrate through a regrowth technology (epitaxially lateral over-growth: ELOG) of a semi-insulating gallium nitride (GaN) layer used in a III-nitride semiconductor electronic device including Group III elements such as gallium (Ga), aluminum (Al) and indium (In) and nitrogen.
Abstract:
The present disclosure relates to a nitride electronic device and a method for manufacturing the same, and particularly, to a nitride electronic device and a method for manufacturing the same that can implement various types of nitride integrated structures on the same substrate through a regrowth technology (epitaxially lateral over-growth: ELOG) of a semi-insulating gallium nitride (GaN) layer used in a III-nitride semiconductor electronic device including Group III elements such as gallium (Ga), aluminum (Al) and indium (In) and nitrogen.
Abstract:
An electroabsorption (EA) duplexer in which an optical amplifier, a photodetector, and an optical modulator are monolithically integrated to obtain a high radio frequency (RF) gain in radio-over fiber (RoF) link optical transmission technology is provided. The EA duplexer includes a substrate, a separation area, an optical detection/modulation unit, and an optical amplification unit. The separation area includes a first epitaxial layer formed of at least one material layer on the substrate. The first epitaxial layer functions as a first optical waveguide. The optical detection/modulation unit includes a second epitaxial layer formed of at least one material layer on the first epitaxial layer to detect and modulate an optical signal. The second epitaxial layer functions as a second optical waveguide. The optical amplification unit includes the second optical waveguide and a third epitaxial layer formed of at least one material layer on the second epitaxial layer to amplify an optical signal. The third epitaxial layer functions as a third optical waveguide. The optical amplification unit is electrically separated from the optical detection/modulation unit by the separation area and is disposed on at least one side of the optical detection/modulation unit.
Abstract:
Provided is a method of fabricating a semiconductor optical device for use in a subscriber or a wavelength division multiplexing (WDM) optical communication system, in which a laser diode (LD) and a semiconductor optical amplifier (SOA) are integrated in a single active layer. The laser diode (LD) and the semiconductor optical amplifier (SOA) are optically connected to each other, and electrically insulated from each other by ion injection, whereby light generated from the LD is amplified by the SOA to provide low oscillation start current and high intensity of output light when current is individually injected through each electrode.
Abstract:
A multi DFB laser diode for generating spontaneous pulses comprises first and second DFB sections each of which has a substrate including a diffraction grating, an active layer formed on the substrate, a clad layer formed on the active layer and including a refraction varying layer, and an electrode formed on the active layer; and a phase tuning section including a substrate, an active layer formed on the substrate, a clad layer formed on the active layer, and an electrode isolated from the electrode of the first and second DFB sections. The refraction varying layer in the active layer of the first DFB section has a refractive index different from that of the refraction varying layer in the active layer of the second DFB section.