摘要:
Provided are semiconductor devices and methods of manufacturing the same. The semiconductor device includes a substrate including a first top surface, a second top surface lower in level than the first top surface, and a first perpendicular surface disposed between the first and second top surfaces, a first source/drain region formed under the first top surface, a first nanowire extended from the first perpendicular surface in one direction and being spaced apart from the second top surface, a second nanowire extended from a side surface of the first nanowire in the one direction, being spaced apart from the second top surface, and including a second source/drain region, a gate electrode on the first nanowire, and a dielectric layer between the first nanowire and the gate electrode.
摘要:
Provided is a self-pulsating laser diode including: a distributed feedback (DFB) section serving as a reflector; a gain section connected to the DFB section and having an as-cleaved facet at one end; a phase control section interposed between the DFB section and the gain section; and an external radio frequency (RF) input portion applying an external RF signal to at least one of the DFB section and the gain section.
摘要:
A full 3R (re-timing, re-shaping, re-amplifying) recovery system is provided. In the full 3R recovery system, a self-pulsating laser diode (SP-LD) and an electroabsorption modulator (EAM) are integrated and disposed on a semiconductor substrate.
摘要:
A method of fabricating quantum wire structures and devices, and quantum dot structures and devices comprise steps of: depositing an insulating layer on a semiconductor substrate, forming a line patterns and a square patterns in an insulating layer, forming a V-grooved patterned structures and a reverse quadrilateral pyramid patterned structures by thermal etching to evaporate portions of the quantum well layer that are not protected by line-shaped mask regions and square-shaped mask regions of the masking layer, forming a quantum wires and a quantum dots by alternatively growing a barrier layer and an active layer on a V-grooved patterned substrate and a reverse quadrilateral pyramid patterned substrate.
摘要:
Disclosed is a fabricating method of a GaAs substrate having a V-shaped groove in a higher density, that is a double density, the method comprising the steps of forming a Si.sub.3 N.sub.4 layer on a main surface of the GaAs substrate; patterning the Si.sub.3 N.sub.4 layer using a photo-lithography to form a patterned Si.sub.3 N.sub.4 layer having a minimum width; wet-etching the GaAs substrate using the patterned Si.sub.3 N.sub.4 layer as a mask, so as to form (111) and (100) surfaces of the GaAs substrate beneath the patterned Si.sub.3 N.sub.4 ; selectively growing a GaAs film on the GaAs substrate etched thus using the patterned Si.sub.3 N.sub.4 layer as a mask so as to form the GaAs film with two (111) facets only on a (100) surface of the GaAs substrate; and removing the Si.sub.3 N.sub.4 layer. The V-shaped grooves can be formed on a GaAs substrate utilizing a difference of growth rate caused by surface orientation of the substrate, and therefore the grooves can be formed in double density.
摘要翻译:本发明公开了一种GaAs衬底的制造方法,该GaAs衬底具有较高密度的V形沟槽,即双重密度,该方法包括以下步骤:在GaAs衬底的主表面上形成Si 3 N 4层; 使用光刻法构图Si 3 N 4层以形成具有最小宽度的图案化的Si 3 N 4层; 使用图案化的Si 3 N 4层作为掩模对GaAs衬底进行湿法蚀刻,以在图案化的Si 3 N 4之下形成GaAs衬底的(111)和(100)表面; 在GaAs衬底上选择性地生长GaAs膜,使用图案化的Si 3 N 4层作为掩模进行蚀刻,以便仅在GaAs衬底的(100)表面上形成具有两个(111)面的GaAs膜; 并去除Si3N4层。 可以使用由衬底的表面取向引起的生长速度差,在GaAs衬底上形成V形槽,因此可以以双重密度形成沟槽。
摘要:
Provided are semiconductor devices and methods of manufacturing the same. The semiconductor device includes a substrate including a first top surface, a second top surface lower in level than the first top surface, and a first perpendicular surface disposed between the first and second top surfaces, a first source/drain region formed under the first top surface, a first nanowire extended from the first perpendicular surface in one direction and being spaced apart from the second top surface, a second nanowire extended from a side surface of the first nanowire in the one direction, being spaced apart from the second top surface, and including a second source/drain region, a gate electrode on the first nanowire, and a dielectric layer between the first nanowire and the gate electrode.
摘要:
Provided is an apparatus and method for simultaneous optical wavelength conversion and optical clock signal extraction using semiconductor optical amplifiers (SOAs). The apparatus includes: a wavelength converter receiving a pump beam having input information and a probe beam having a different wavelength from the pump beam, and outputting the pump beam with an overshoot shifted to a red wavelength and an undershoot shifted to a blue wavelength due to non-linear characteristics and self-phase modulation of semiconductor optical amplifiers (SOAs) and the probe beam delivered the input information from the pump beam; an optical divider dividing output paths of the probe beam to which the input information has been delivered and the pump beam having the overshoot and the undershoot; a converted-wavelength extractor filtering the probe beam received from the optical divider; and a clock data regenerator obtaining a pseudo return-to-zero (PRZ) signal from the pump beam received from the optical divider and extracting a clock signal from the PRZ signal.The apparatus and method can simultaneously perform wavelength conversion and optical clock signal extraction on an NRZ signal using an optical method, without converting the NRZ signal into an electrical signal.
摘要:
There are provided a bi-directional transceiver module and a method for driving the same. The bi-directional transceiver module includes a 1.3 μm Distributed Bragg Reflection Laser Diode (DBR LD) including an active layer which performs light-emission in response to a light at 1.3 μm and a DBR mirror formed near the active layer. The DBR mirror is formed to prevent an upstream signal emerging from the 1.3 μm DBR LD from being deleted by a PD. A monitoring PD and a PD for detecting an optical signal are integrated and mounted behind the DBR mirror using a butt-joint method. The 1.3 μm DBR LD, the monitoring PD, and the PD for detecting the optical signal are electrically isolated by insulated areas. To drive the bi-directional transceiver module, a forward bias (+) is applied to a p-electrode formed on the 1.3 μm DBR LD, a backward bias (−) is applied to p-electrodes formed on the monitoring PD and the PD for detecting the optical signal, and a n-electrode as a common electrode is grounded.
摘要:
A DBR structure in a VCSEL diode, a method of manufacturing the DBR structure, and a VCSEL diode are provided. The DBR structure in the VCSEL diode includes: an InAlGaAs layer having a predetermined refractive index and disposed on an InP substrate; a first InAlAs layer having a lower refractive index than the InAlGaAs layer and disposed on the InAlGaAs layer; an InP layer having a lower refractive index than the InAlGaAs layer and disposed on the first InAlAs layer; and a second InAlAs layer having a lower refractive index than the InAlGaAs layer and disposed on the InP layer. Thus, the DBR structure can reduce optical loss due to type-II band line-up at a junction between the InAlGaAs layer and the InP layer, and thus improve device characteristics.
摘要:
Disclosed is an electro-absorption optical modulator using a semiconductor device. The optical modulator makes use of a change in light absorption caused by displacement of an absorption curve depending on a bias voltage applied to the device. Here, a level of the light absorption depending on the bias voltage is expressed as a transfer function of output light to the applied bias, and the transfer function has a non-linear profile due to a characteristic of a material. Unlike signal modulation of a digital optical communication system, an analog optical transmission system can be subjected to deterioration in performance, because the non-linear characteristic of the transfer function for the optical modulator generates signal distortion when an electrical signal is converted into an optical signal. The typical optical modulator has an absorption layer constituted of quantum wells having the same width. However, the inventive optical modulator has the absorption layer formed by the combination of quantum wells having a width different form each other, thus having excellent linearity.