Abstract:
An underfill material having sufficient curing reactivity, and capable of achieving a small change in viscosity and good electrical connection even when loaded with thermal history, a laminated sheet including the underfill material, and a method for manufacturing a semiconductor device. The underfill material has a melt viscosity at 150° C. before heating treatment of 50 Pa·s or more and 3,000 Pa·s or less, a viscosity change rate of 500% or less, at 150° C. as a result of the heating treatment, and a reaction rate represented by {(Qt−Qh)/Qt}×100% of 90% or more, where Qt is a total calorific value in a process of temperature rise from −50° C. to 300° C. and Qh is a total calorific value in a process of temperature rise from −50° C. to 300° C. after heating at 175° C. for 2 hours in a DSC measurement.
Abstract:
Provided are a thermosetting resin composition with which a semiconductor device having a high connection reliability can be provided while securing availability of member materials by reducing a difference in thermal-responsive behavior between a semiconductor element and an adherend, and a method for producing a semiconductor device using the thermosetting resin composition. The present invention provides a thermosetting resin composition for producing a semiconductor device, the thermosetting resin composition comprising: an epoxy resin; and a novolak-type phenol resin having a hydroxyl equivalent of 200 g/eq or more.
Abstract:
The present invention is to provide a dicing-tape integrated film for the backside of a semiconductor that is capable of suppressing the increase of the peel strength between the dicing tape and the film for the backside of a flip-chip semiconductor due to heating. The dicing-tape integrated film for the backside of a semiconductor has a dicing tape having a substrate and a pressure-sensitive adhesive layer formed on the substrate and a film for the backside of a flip-chip semiconductor formed on the pressure-sensitive adhesive layer of the dicing tape, in which the difference (γ2−γ1) of the surface free energy γ2 and the surface free energy γ1 is 10 mJ/m2 or more, where γ1 represents the surface free energy of the pressure-sensitive adhesive layer and γ2 represents the surface free energy of the film for the backside of a flip-chip semiconductor.
Abstract:
Provided is a method for manufacturing a semiconductor device, which can manufacture a semiconductor device at a high yield ratio by suppressing dissolution of a sheet-shaped resin composition when cleaning a wafer after peeling a supporting member from the wafer. The present invention provides a method for manufacturing a semiconductor device, the method including: a step A of preparing a wafer; a step B of pasting together a second main surface of the wafer and a supporting member including a support and a temporary fixing layer formed on the support with the temporary fixing layer interposed between the second main surface and the supporting member; a step C of preparing a laminate including a dicing tape and an ultraviolet curable sheet-shaped resin composition laminated on the dicing tape; a step D of pasting together a first main surface of the wafer and the sheet-shaped resin composition; a step E of peeling the supporting member from the wafer after the step D; a step F of cleaning the second main surface of the wafer after the step E; and a step S of irradiating a peripheral part of the sheet-shaped resin composition with ultraviolet light to cure the peripheral part after the step D and before the step F, the peripheral part not overlapping with the wafer in a plan view.
Abstract:
A method for producing a semiconductor device includes: a Step A of preparing a chip with sheet-shaped resin composition in which a sheet-shaped resin composition is pasted onto a bump formation surface of a semiconductor chip, a Step B of preparing a substrate for mounting on which an electrode is formed, a Step C of pasting the chip with resin composition to the substrate for mounting so that the resin composition serves as a pasting surface with the bump formed on the semiconductor chip facing toward the electrode formed on the substrate for mounting, a Step D of heating the resin composition to semi-cure the resin composition after the Step C, and a Step E of heating the resin composition at a higher temperature than that in the Step D to cure the resin composition after the Step D while bonding the bump and the electrode.
Abstract:
An opto-electric hybrid board which is excellent in the mountability of an optical element and in flexibility is provided. The opto-electric hybrid board includes an electric circuit board, an optical waveguide, and metal layers. The electric circuit board includes an insulative layer having front and back surfaces, and optical element mounting pads formed on the front surface of the insulative layer. The optical waveguide includes a first cladding layer, and is formed on the back surface of the insulative layer of the electric circuit board in such a manner that the first cladding layer is in contact with the back surface of the insulative layer. The metal layers are provided between the insulative layer and the first cladding layer and disposed in corresponding relation to the optical element mounting pads.
Abstract:
An opto-electric hybrid board which is excellent in the mountability of an optical element and in flexibility is provided. The opto-electric hybrid board includes an electric circuit board, an optical waveguide, and metal layers. The electric circuit board includes an insulative layer having front and back surfaces, and optical element mounting pads formed on the front surface of the insulative layer. The optical waveguide includes a first cladding layer, and is formed on the back surface of the insulative layer of the electric circuit board in such a manner that the first cladding layer is in contact with the back surface of the insulative layer. The metal layers are provided between the insulative layer and the first cladding layer and disposed in corresponding relation to the optical element mounting pads.
Abstract:
The present invention provides an adhesive film for underfill that is capable of increasing a glass transition temperature without losing flexibility. The present invention relates to an adhesive film for underfill containing resin components containing an epoxy resin having a number average molecular weight of 600 or less, a phenol resin having a number average molecular weight exceeding 500, and an elastomer in which a content of the epoxy resin in the resin components is 5 to 50% by weight, and the content of the phenol resin in the resin components is 5 to 50% by weight.
Abstract:
An opto-electric hybrid board capable of suppressing the increase in light propagation losses and excellent in flexibility, and a method of manufacturing the same, are provided. The opto-electric hybrid board includes an electric circuit board, an optical waveguide, and a metal layer. The electric circuit board includes an insulative layer having front and back surfaces, and electrical interconnect lines formed on the front surface of the insulative layer. The optical waveguide is formed on the back surface of the insulative layer. The metal layer is formed between the cladding layer and the insulative layer. At least part of the metal layer is formed in one of first and second patterns. The first pattern includes a distribution of dot-shaped protrusions, and the second pattern includes a distribution of dot-shaped recesses. A first cladding layer fills a site where the metal layer is removed by the patterning.
Abstract:
A substance detection sensor includes an insulating layer; two electrodes spaced in opposed relation to each other on the insulating layer; and conductive layers formed between the two electrodes on the insulating layer so as to electrically connect the two electrodes, and of which a swelling ratio varies depending on the type and/or amount of a specific gas. The conductive layers are formed by dividing into plural layers between the two electrodes.