Abstract:
An embodiment of a method of lithography includes generating a beam of electrons. A first pixel and a second pixel are each configured to pattern the beam. Using time domain multiplex loading, the first and second pixels are controlled such that the beam is patterned. The patterning includes receiving a first clock signal and using the first clock signal to generate a second clock signal and a third clock signal. The second clock signal is sent to the first pixel and sending the third clock signal is sent to the second pixel.
Abstract:
An integrated circuit device is disclosed. An exemplary integrated circuit device includes a first copper layer, a second copper layer, and an interface between the first and second copper layers. The interface includes a flat zone interface region and an intergrowth interface region, wherein the flat zone interface region is less than or equal to 50% of the interface.
Abstract:
A memory includes a word line, a bit line and a complementary bit line. A memory cell has a data node coupled to the bit line and a complementary data node coupled to the complementary bit line. The word line controls access to the memory cell. A circuit is coupled to the bit line and the complementary bit line. The circuit is configured to pull up to a high voltage, pull down to a low voltage, or float the bit line and the complementary bit line based on a first timing of pre-charging and a second timing of write driving. The first timing and the second timing are synchronized.
Abstract:
A fine pitch package-on-package (PoP), and a method of forming, are provided. The PoP may be formed by placing connections, e.g., solder balls, on a first substrate having a semiconductor die attached thereto. A first reflow process is performed to elongate the solder balls. Thereafter, a second substrate having another semiconductor die attached thereto is connected to the solder balls. A second reflow process is performed to form an hourglass connection.
Abstract:
A method includes: receiving a library associated with a cell; determining a plurality of candidate hold times for the cell; acquiring a plurality of candidate setup times corresponding to the plurality of candidate hold times, wherein a data delay associated with each of the candidate setup time fulfills a data delay constraint for the cell; adding the plurality of candidate setup times to the plurality of candidate hold times, respectively, to obtain a plurality of candidate time windows; and selecting a target time window having a minimal time span among the candidate time windows. At least one of the receiving, determining, acquiring, adding and selecting steps is conducted by at least one processor.
Abstract:
An integrated circuit comprises standard cells arranged in rows and columns. The integrated circuit also comprises tap cells arranged in rows and columns. The tap cells each comprise a substrate having a first dopant type and a thickness from a first surface of the substrate to a second surface of the substrate. The integrated circuit further comprises a well region in the substrate having a second dopant type different from the first dopant type and a depth from the first surface of the substrate less than the thickness of the substrate. The integrated circuit additionally comprises a first quantity of rows of tap cells and a second quantity of rows of tap cells less than the first quantity. Each row of the first quantity of rows of tap cells comprises at least one well contact, and each row of tap cells of the second quantity of tap cells comprises at least one substrate contact.
Abstract:
Apparatus and methods for providing solder pillar bumps. Pillar bump connections are formed on input/output terminals for integrated circuits by forming a pillar of conductive material using plating of a conductive material over terminals of an integrated circuit. A base portion of the pillar bump has a greater width than an upper portion. A cross-section of the base portion of the pillar bump may make a trapezoidal, rectangular, or sloping shape. Solder material may be formed on the top surface of the pillar. The resulting solder pillar bumps form fine pitch package solder connections that are more reliable than those of the prior art.
Abstract:
A system includes an integrated circuit (IC) design data base having a feature, a source configured to generate a radiation beam, a pattern generator (PG) including a mirror array plate and an electrode plate disposed over the mirror array plate, wherein the electrode plate includes a lens let having a first dimension and a second dimension perpendicular to the first dimension with the first dimension larger than the second dimension so that the lens let modifies the radiation beam to form the long shaped radiation beam, and a stage configured secured the substrate. The system further includes an electric field generator connecting the mirror array plate. The mirror array plate includes a mirror. The mirror absorbs or reflects the radiation beam. The radiation beam includes electron beam or ion beam. The second dimension is equal to a minimum dimension of the feature.
Abstract:
The present disclosure provides a systems and methods for e-beam lithography. One system includes an electron source operable to produce a beam and an array of pixels operable to pattern the beam. Control circuitry is spaced a distance from and coupled to the array of pixels. The control circuitry uses time domain multiplex loading (TMDL) to control the array of pixels.
Abstract:
The present disclosure provides a systems and methods for e-beam lithography. One system includes an electron source operable to produce a beam and an array of pixels operable to pattern the beam. Control circuitry is spaced a distance from and coupled to the array of pixels. The control circuitry uses time domain multiplex loading (TMDL) to control the array of pixels.