Abstract:
A catalytic resin is formed by mixing a resin and either homogeneous or heterogeneous catalytic particles, the resin infused into a woven glass fabric to form an A-stage pre-preg, the A-stage pre-preg cured into a B-stage pre-preg, thereafter held in a vacuum and between pressure plates at a gel point temperature for a duration of time sufficient for the catalytic particles to migrate away from the resin rich surfaces of the pre-preg, thereby forming a C-stage pre-preg after cooling. The C-stage pre-preg subsequently has trenches formed by removing the resin rich surface, the trenches extending into the depth of the catalytic particles, optionally including drilled holes to form vias, and the C-stage pre-preg with trenches and holes placed in an electroless bath, whereby traces form in the trenches and holes where the surface of the cured pre-preg has been removed.
Abstract:
A prepreg contains a base material containing a reinforcing fiber and a semi-cured product of a resin composition impregnated into the base material containing a reinforcing fiber. The prepreg after cured has a glass transition temperature (Tg) which is higher than or equal to 150° C. and lower than or equal to 220° C. The resin composition contains (A) a thermosetting resin and (B) at least one compound selected from a group consisting of core shell rubber and a polymer component having a weight average molecular weight of 100000 or more. An amount of the (B) component is higher than or equal to 30 parts by mass and lower than or equal to 100 parts by mass with respect to 100 parts by mass of the (A) component.
Abstract:
A catalytic resin is formed by mixing a resin and either homogeneous or heterogeneous catalytic particles, the resin infused into a woven glass fabric to form an A-stage pre-preg, the A-stage pre-preg cured into a B-stage pre-preg, thereafter held in a vacuum and between pressure plates at a gel point temperature for a duration of time sufficient for the catalytic particles to migrate away from the resin rich surfaces of the pre-preg, thereby forming a C-stage pre-preg after cooling. The C-stage pre-preg subsequently has trenches formed by removing the resin rich surface, the trenches extending into the depth of the catalytic particles, optionally including drilled holes to form vias, and the C-stage pre-preg with trenches and holes placed in an electroless bath, whereby traces form in the trenches and holes where the surface of the cured pre-preg has been removed.
Abstract:
The problem to be solved by the invention is to provide an epoxy resin composition for a prepreg, which is used in the manufacture of a printed circuit board containing a multilayer printed circuit board, wherein the epoxy resin composition for a prepreg is characterized by containing as essential components, a phosphorus compound that has 1.8 or more and less than 3 on average of a phenolic hydroxyl group that is reactive to an epoxy resin in the molecule, and that has 0.8 or more on average of a phosphorus element; a bifunctional epoxy resin that has 1.8 or more and less than 2.6 on average of epoxy groups in the molecule; a multi-functional epoxy resin that contains 2.8 or more on average of epoxy groups in one molecule; a hardening agent; an inorganic filler; and a molybdenum compound, wherein the epoxy resin composition for a prepreg is obtained by blending a pre-reacted epoxy resin, which is obtained by reacting at least the phosphorus compound with the bifunctional epoxy resin and the multi-functional epoxy resin, or the bifunctional epoxy resin only in advance, the bifunctional epoxy resin or the multi-functional epoxy resin, the hardening agent, the inorganic filler, and the molybdenum compound, which is excellent in flame retardance, heat resistance, thermal stiffness, and excellent in hole position accuracy without the production of a harmful substance at the time of combustion, a prepreg using the epoxy resin composition for a prepreg, and a multilayer printed circuit board using the prepreg.
Abstract:
It is an object of the present invention to provide a thermosetting composition which is excellent in low warpage properties and long-term electrical insulation reliability and is capable of forming an insulating film that inhibits disconnection of wiring of a flexible wiring board. The thermosetting composition of the present invention is a thermosetting composition for forming an insulating film, by curing the composition, on a flexible wiring board comprising a wiring pattern formed on a flexible substrate, and is characterized in that a cured product obtained by curing the composition has a tensile elastic modulus of 0.5 to 2.0 GPa.
Abstract:
In an embodiment, a printed circuit board substrate (12) comprises a polymer matrix; a reinforcing layer (42); and a plurality of coated boron nitride particles (44); wherein the plurality of coated boron nitride particles comprise a coating having an average coating thickness of 1 to 100 nanometers. The polymer matrix can comprise at least one of an epoxy, a polyphenylene ether, polystyrene, an ethylene-propylene dicyclopentadiene copolymer, a polybutadiene, a polyisoprene, a fluoropolymer, or a crosslinked matrix comprising at least one of triallyl cyanurate, triallyl isocyanurate, 1,2,4-trivinyl cyclohexane, trimethylolpropane triacrylate, or trimethylolpropane trimethacrylate.
Abstract:
A resin composition is provided. The resin composition comprises the following components: (A) a halogen-free epoxy resin; (B) a hardener; and (C) a phosphorus-containing phenolic resin of the following formula (I): wherein m, n, 1, R1, and R2 are as defined in the specification.
Abstract:
An inorganic filler according to an embodiment of the present invention includes a boron nitride agglomerate and a coating layer formed on the boron nitride agglomerate and including a —Si—R—NH2 group, and R is selected from the group consisting of an alkyl group having 1 to 3 carbon atoms, an alkene group having 2 to 3 carbon atoms, and an alkyne group having 2 to 3 carbon atoms.
Abstract:
An inorganic filler according to an embodiment of the present invention includes a boron nitride agglomerate and a coating layer formed on the boron nitride agglomerate and including a —Si—R—NH2 group, and R is selected from the group consisting of an alkyl group having 1 to 3 carbon atoms, an alkene group having 2 to 3 carbon atoms, and an alkyne group having 2 to 3 carbon atoms.
Abstract:
An anisotropic conductive film includes a base board and an insulation adhesive layer coated on a side surface of the base board. The insulation adhesive layer includes a plurality of conductive particles dispersed in the insulation adhesive layer. Each of the plurality of conductive particles includes a spherical base portion, a conductive film formed on the spherical base portion, and an insulation layer with ceramic materials formed on the conductive film. The insulation layer defines a plurality of holes, thus the insulation layer is porous, the insulation layer is capable of being partly exposed from the plurality of holes when the plurality of conductive particles is pressed. A method for manufacturing the anisotropic conductive film is also provided.