Abstract:
A method and structure for receiving a micro device on a receiving substrate are disclosed. A micro device such as a micro LED device is punched-through a passivation layer covering a conductive layer on the receiving substrate, and the passivation layer is hardened. In an embodiment the micro LED device is punched-through a B-staged thermoset material. In an embodiment the micro LED device is punched-through a thermoplastic material.
Abstract:
A display panel and method of manufacture are described. In an embodiment, a display substrate includes a pixel area and a non-pixel area. An array of subpixels and corresponding array of bottom electrodes are in the pixel area. An array of micro LED devices are bonded to the array of bottom electrodes. One or more top electrode layers are formed in electrical contact with the array of micro LED devices. In one embodiment a redundant pair of micro LED devices are bonded to the array of bottom electrodes. In one embodiment, the array of micro LED devices are imaged to detect irregularities.
Abstract:
Light emitting devices and methods of integrating micro LED devices into light emitting device are described. In an embodiment a light emitting device includes a reflective bank structure within a bank layer, and a conductive line atop the bank layer and elevated above the reflective bank structure. A micro LED device is within the reflective bank structure and a passivation layer is over the bank layer and laterally around the micro LED device within the reflective bank structure. A portion of the micro LED device and a conductive line atop the bank layer protrude above a top surface of the passivation layer.
Abstract:
Compliant monopolar and bipolar micro device transfer head arrays and methods of formation from SOI substrates are described. In an embodiment, an array of compliant transfer heads are formed over a base substrate and deflectable toward the base substrate, and a patterned metal layer includes a metal interconnect layer electrically connected with an array of the metal electrodes in the array of compliant transfer heads.
Abstract:
A display panel and a method of forming a display panel are described. The display panel may include a thin film transistor substrate including a pixel area and a non-pixel area. The pixel area includes an array of bank openings and an array of bottom electrodes within the array of bank openings. A ground line is located in the non-pixel area and an array of ground tie lines run between the bank openings in the pixel area and are electrically connected to the ground line in the non-pixel area.
Abstract:
A light emitting assembly is described. In one embodiment, one or more light emitting diode (LED) devices and one or more microcontrollers are bonded to a same side of a substrate, with the one or more microcontrollers to switch and drive the one or more LED devices.
Abstract:
A flexible display panel and method of formation with a sacrificial release layer are described. The method of manufacturing a flexible display system includes forming a sacrificial layer on a carrier substrate. A flexible display substrate is formed on the sacrificial layer, with a plurality of release openings that extend through the flexible display substrate to the sacrificial layer. An array of LEDs and a plurality of microchips are transferred onto the flexible display substrate to form a flexible display panel. The sacrificial layer is selectively removed such that the flexible display panel attaches to the carrier substrate by a plurality of support posts. The flexible display panel is removed from the carrier substrate and is electrically coupled with display components to form a flexible display system.
Abstract:
A display panel and a method of forming a display panel are described. The display panel may include a thin film transistor substrate including a pixel area and a non-pixel area. The pixel area includes an array of bank openings and an array of bottom electrodes within the array of bank openings. An array of micro LED devices are bonded to the corresponding array of bottom electrodes within the array of bank openings. An array of top electrode layers are formed electrically connecting the array of micro LED devices to a ground line in the non-pixel area.
Abstract:
A compliant micro device transfer head and head array are disclosed. In an embodiment a micro device transfer head includes a spring portion that is deflectable into a space between a base substrate and the spring portion.
Abstract:
A micro device transfer head array and method of forming a micro device transfer array from an SOI substrate are described. In an embodiment, the micro device transfer head array includes a base substrate and a patterned silicon layer over the base substrate. The patterned silicon layer may include a silicon interconnect and an array of silicon electrodes electrically connected with the silicon interconnect. Each silicon electrode includes a mesa structure protruding above the silicon interconnect. A dielectric layer covers a top surface of each mesa structure.