Abstract:
A technique includes loading a substrate into a process chamber, supporting the substrate by a mounting table having a heater therein in the process chamber, forming a film on the substrate by supplying a processing gas into the process chamber in a state where the mounting table having the substrate supported thereon is disposed in a first position and the heater is turned on, unloading the substrate on which the film is formed, and supplying a reactive gas into the process chamber in a state where the mounting table is disposed in a second position and the heater is turned on. The second position is closer to a ceiling portion in the process chamber than the first position.
Abstract:
Manufacturing stability of a semiconductor device is improved. A method of manufacturing a semiconductor device includes the steps of: forming an etching stopper film over a first interlayer insulating film; forming an inorganic insulating film over the etching stopper film; forming a resist film over the inorganic insulating film; selectively etching the etching stopper film and the inorganic insulating film by using the resist film as a mask to form a first opening in the etching stopper film and to form a second opening in the inorganic insulating film; removing the resist film by O2 plasma ashing; forming a second interlayer insulating film over the inorganic insulating film; and etching the second interlayer insulating film to form a wiring groove that is coupled to the second opening, and etching a portion located under the first opening of the first interlayer insulating film to form a via hole.
Abstract:
The present invention aims to provide positive photosensitive compositions that have excellent patterning properties and can exhibit excellent electrical insulation reliability when cured (as thin films). The positive photosensitive composition according to a first aspect of the present invention is characterized by including (A) a compound that contains an alkenyl group or a SiH group within a molecule and has a structure that decomposes in the presence of acid to generate an acidic group or a hydroxyl group; (B) a compound that contains a SiH group or an alkenyl group within a molecule; (C) a hydrosilylation catalyst; and (D) a photoacid generator.
Abstract:
When a recess is formed in a SiCOH film, C is removed from the film to form a damage layer. If the damage layer is removed by hydrofluoric acid or the like, the surface becomes hydrophobic. By supplying a boron compound gas, a silicon compound gas or a gas containing trimethyl aluminum to the SiCOH film, B, Si or Al is adsorbed on the SiCOH film. These atoms bond with Ru and a Ru film is easily formed on the SiCOH film. The Ru film is formed using, for example, Ru3(CO)12 gas and CO gas. Copper is filled in the recess and an upper side wiring structure is formed by carrying out CMP processing.
Abstract:
A hardmask composition includes a polymer including a moiety represented by the following Chemical Formula 1 and a solvent. In the Chemical Formula 1, A, B, R1 and R2 are the same as defined in the detailed description.
Abstract:
A method for processing a substrate exposes a silicon-containing surface at a circumferential edge portion of a first main surface of a substrate to be processed, performs surface processing to the silicon-containing surface to increase a contact angle of the silicon-containing surface with respect to a resist material, comparing with the contact angle before the surface processing is performed, supplies the resist material onto the substrate to be processed after the surface processing, and transfers a template pattern to the resist material.
Abstract:
A substrate processing method includes a coating step that applies a coating liquid to a substrate having a front surface on which a pattern is formed, thereby forming a coating film on the substrate, a film removing step that heats the substrate to gasify components of the coating film thereby to reduce a thickness of the film, and a film curing step that is performed after or simultaneously with the film removing step and that heats the substrate to cure the coating film through crosslinking reaction. The film removing step is performed under conditions ensuring that an average thickness of the cured coating film is not greater than 80% of an average thickness of the coating film before being subjected to the film removing step.
Abstract:
A method of manufacturing a semiconductor device includes forming a film on a substrate by performing a cycle a predetermined number of times. The cycle includes non-simultaneously performing: supplying a precursor containing a predetermined element to the substrate in a process chamber, removing the precursor from the process chamber, supplying a first reactant containing nitrogen, carbon and hydrogen to the substrate, removing the first reactant from the process chamber, supplying a second reactant containing oxygen to the substrate, and removing the second reactant from the process chamber. A time period of the act of removing the precursor is set to be longer than a time period of the act of removing the first reactant, or a time period of the act of removing the second reactant is set to be longer than the time period of the act of removing the first reactant.
Abstract:
Provided are a semiconductor device and semiconductor-device manufacturing method that make it possible to improve the contact between an insulating film and a wiring member and the reliability thereof. This method for manufacturing a semiconductor device (100) includes a step in which a CF film (106) is formed on top of a semiconductor substrate (102), a step in which grooves (C) corresponding to a wiring pattern (P) are formed in the CF film (106), and a step in which a copper wiring member (114) is embedded in the grooves (C).
Abstract:
A lithography method is provided in accordance with some embodiments. The lithography method includes forming an under layer of a polymeric material on a substrate; forming a silicon-containing middle layer on the under layer, wherein the silicon-containing middle layer has a silicon concentration in weight percentage less than 20% and is wet strippable; forming a patterned photosensitive layer on the silicon-containing middle layer; performing a first etching process to transfer a pattern of the patterned photosensitive layer to the silicon-containing middle layer; performing a second etching process to transfer the pattern to the under layer; and performing a wet stripping process to the silicon-containing middle layer and the under layer.