Abstract:
A semiconductor device is manufactured by, first, providing a wafer, designated with a saw street guide, and having a bond pad formed on an active surface of the wafer. The wafer is taped with a dicing tape. The wafer is singulated along the saw street guide into a plurality of dies having a plurality of gaps between each of the plurality of dies. The dicing tape is stretched to expand the plurality of gaps to a predetermined distance. An organic material is deposited into each of the plurality of gaps. A top surface of the organic material is substantially coplanar with a top surface of a first die of the plurality of dies. A redistribution layer is patterned over a portion of the organic material. An under bump metallization (UBM) is deposited over the organic material in electrical communication, through the redistribution layer, with the bond pad.
Abstract:
A semiconductor device includes a pre-fabricated shielding frame mounted over a sacrificial substrate and semiconductor die. An encapsulant is deposited through an opening in the shielding frame around the semiconductor die. A first portion of the shielding frame to expose the encapsulant. Removing the first portion also leaves a second portion of the shielding frame over the semiconductor die as shielding from interference. A third portion of the shielding frame around the semiconductor die provides a conductive pillar. A first interconnect structure is formed over a first side of the encapsulant, shielding frame, and semiconductor die. The sacrificial substrate is removed. A second interconnect structure over the semiconductor die and a second side of the encapsulant. The shielding frame can be connected to low-impedance ground point through the interconnect structures or TSV in the semiconductor die to isolate the die from EMI and RFI, and other inter-device interference.
Abstract:
A semiconductor device is made by providing a semiconductor die having an optically active area, providing a leadframe or pre-molded laminated substrate having a plurality of contact pads and a light transmitting material disposed between the contact pads, attaching the semiconductor die to the leadframe so that the optically active area is aligned with the light transmitting material to provide a light transmission path to the optically active area, and disposing an underfill material between the semiconductor die and leadframe. The light transmitting material includes an elevated area to prevent the underfill material from blocking the light transmission path. The elevated area includes a dam surrounding the light transmission path, an adhesive ring, or the light transmission path itself can be the elevated area. An adhesive ring can be disposed on the dam. A filler material can be disposed between the light transmitting material and contact pads.
Abstract:
A semiconductor device includes a semiconductor die. An encapsulant is formed around the semiconductor die. A build-up interconnect structure is formed over a first surface of the semiconductor die and encapsulant. A first supporting layer is formed over a second surface of the semiconductor die as a supporting substrate or silicon wafer disposed opposite the build-up interconnect structure. A second supporting layer is formed over the first supporting layer an includes a fiber enhanced polymer composite material comprising a footprint including an area greater than or equal to an area of a footprint of the semiconductor die. The semiconductor die comprises a thickness less than 450 micrometers (μm). The thickness of the semiconductor die is at least 1 μm less than a difference between a total thickness of the semiconductor device and a thickness of the build-up interconnect structure and the second supporting layer.
Abstract:
A semiconductor device is made by forming a heat spreader over a carrier. A semiconductor die is mounted over the heat spreader with a first surface oriented toward the heat spreader. A first insulating layer is formed over the semiconductor die and heat spreader. A via is formed in the first insulating layer. A first conductive layer is formed over the first insulating layer and connected to the heat spreader through the via and to contact pads on the semiconductor die. The heat spreader extends from the first surface of the semiconductor die to the via. A second insulating layer is formed over the first conductive layer. A second conductive layer is electrically connected to the first conductive layer. The carrier is removed. The heat spreader dissipates heat from the semiconductor die and provides shielding from inter-device interference. The heat spreader is grounded through the first conductive layer.
Abstract:
A semiconductor device has an electrical component and a first interconnect structure disposed adjacent to the electrical component. The electrical component can be a direct metal bonded semiconductor die or a flipchip semiconductor die. The first interconnect structure can be an interposer unit or a conductive pillar. A split antenna is disposed over the electrical component and first interconnect structure. The split antenna has a first antenna section and a second antenna section with an adhesive material disposed between the first antenna section and second antenna section. A second interconnect structure is formed over the electrical component and first interconnect structure. The second interconnect structure has one or more conductive layers and insulating layers. The first interconnect structure and second interconnect structure provide a conduction path between the electrical component and split antenna. An encapsulant is deposited around the electrical component and first interconnect structure.
Abstract:
An integrated package and a method for making the same are provided. The integrated package includes: an antenna module including: an antenna module substrate; and a top antenna structure disposed on the antenna module substrate; a first encapsulant encapsulating the antenna module; a first redistribution structure disposed on a bottom surface of the first encapsulant, wherein the first redistribution structure includes a bottom antenna structure configured for coupling electromagnetic energy with the top antenna structure; and a semiconductor chip mounted on a bottom surface of the first redistribution structure and electrically coupled with the bottom antenna structure.
Abstract:
A semiconductor device has a semiconductor package including a substrate comprising a land grid array. A component is disposed over the substrate. An encapsulant is deposited over the component. The land grid array remains outside the encapsulant. A fanged metal mask is disposed over the land grid array. A shielding layer is formed over the semiconductor package. The fanged metal mask is removed after forming the shielding layer.
Abstract:
A semiconductor device has a substrate comprising a carrier and an interposer disposed on the carrier. An electrical component is disposed over a first surface of the interposer. An interconnect structure is disposed over the first surface of the interposer. An encapsulant is deposited over the electrical component, interconnect structure, and substrate. A trench is formed through the encapsulant and interposer into the carrier. A shielding layer is formed over the encapsulant and into the trench. The carrier is removed after forming the shielding layer.
Abstract:
A semiconductor device has a semiconductor die and an encapsulant deposited over the semiconductor die to form a reconstituted wafer. A first insulating layer is formed over the reconstituted wafer. A first dummy opening is formed in the first insulating layer. A first conductive layer is formed on the first insulating layer including a first contact pad over the first dummy opening.