Abstract:
In accordance with an embodiment, an analytical apparatus includes a member, a voltage source connected to the member and a detecting section. The member has an inserting portion into which a sample holder supporting a sample is insertable and whose shape corresponds to a shape of the sample holder. The detecting section is configured to detect a substance to be emitted from the sample by field evaporation. The shape of the inserting portion in a cross section of a direction perpendicular to an inserting direction of the sample holder is a shape excluding a perfect circle.
Abstract:
This charged particle beam device irradiates a primary charged particle beam generated from a charged particle microscope onto a sample arranged on a light-emitting member that makes up at least a part of a sample base, and, in addition to obtaining charged particle microscope images by the light-emitting member detecting charged particles transmitted through or scattered inside the sample, obtains optical microscope images by means of an optical microscope while the sample is still arranged on the sample platform.
Abstract:
A charge transfer mechanism is used to locally deposit or remove material for a small structure. A local electrochemical cell is created without having to immerse the entire work piece in a bath. The charge transfer mechanism can be used together with a charged particle beam or laser system to modify small structures, such as integrated circuits or micro-electromechanical system. The charge transfer process can be performed in air or, in some embodiments, in a vacuum chamber.
Abstract:
A scanning electron microscope (SEM) with a swing objective lens (SOL) reduces the off-aberrations to enhance the image resolution, and extends the e-beam scanning angle. The scanning electron microscope comprises a charged particle source, an accelerating electrode, and a swing objective lens system including a pre-deflection unit, a swing deflection unit and an objective lens, all of them are rotationally symmetric with respect to an optical axis. The upper inner-face of the swing deflection unit is tilted an angle θ to the outer of the SEM and its lower inner-face is parallel to the optical axis. A distribution for a first and second focusing field of the swing objective lens is provided to limit the off-aberrations and can be performed by a single swing deflection unit. Preferably, the two focusing fields are overlapped by each other at least 80 percent.
Abstract:
The purpose of the present invention is to provide a charged particle gun using merely an electrostatic lens, said charged particle gun being relatively small and having less aberration, and to provide a field emission-type charged particle gun having high luminance even with a high current. This charged particle gun has: a charged particle source; an acceleration electrode that accelerates charged particles emitted from the charged particle source; a control electrode, which is disposed further toward the charged particle source side than the acceleration electrode, and which has a larger aperture diameter than the aperture diameter of the acceleration electrode; and a control unit that controls, on the basis of a potential applied to the acceleration electrode, a potential to be applied to the control electrode.
Abstract:
A charged particle beam apparatus includes a charged particle beam source which irradiates a sample with a charged particle beam, an electromagnetic lens, a lens control electric source for controlling strength of a convergence effect of the electromagnetic lens; and a phase compensation circuit which is connected to the lens control electric source in parallel with the electromagnetic lens, and controls a lens current at the time of switching the strength of the convergence effect of the electromagnetic lens such that the lens current monotonically increases or monotonically decreases.
Abstract:
A charge transfer mechanism is used to locally deposit or remove material for a small structure. A local electrochemical cell is created without having to immerse the entire work piece in a bath. The charge transfer mechanism can be used together with a charged particle beam or laser system to modify small structures, such as integrated circuits or microelectromechanical system. The charge transfer process can be performed in air or, in some embodiments, in a vacuum chamber.
Abstract:
In order to provide a charged particle beam apparatus capable of high resolution measurement of a sample at any inclination angle, a charged particle beam apparatus for detecting secondary charged particles (115) generated by irradiating a sample (114) with a primary charged particle beam (110) is provided with a beam tilt lens (113) having: a yoke magnetic path member (132) and a lens coil (134) to focus the primary charged particle beam (110) on the sample (114); and a solenoid coil (133) configured to arrange the upper end on the side surface of the yoke magnetic path member (132) and arrange the bottom end between the tip end of the pole piece of the yoke magnetic path member (132) and the sample (114) in order to arbitrarily tilt the primary charged particle beam (110) on the sample (114).
Abstract:
In accordance with an embodiment, an analysis apparatus includes a secondary electron optical system, at least one detector, and a composition analysis unit. The secondary electron optical system includes a charged particle beam source and a lens. The charged particle beam source generates a charged particle beam and irradiates a sample with it. The lens controls a focal position and a trajectory of the charged particle beam using an electric field or a magnetic field. The detector detects a characteristic X-ray from the sample. The composition analysis unit analyzes a composition of a material constituting the sample from the detected characteristic X-ray. Each detector is arranged in such a manner that at least part of a detection surface thereof is placed on the same plane as an exit surface of the secondary electron optical system, or placed on the charged particle beam side of the same plane.
Abstract:
A sample holder is provided allowing for favorable observation of a cross-sectional sample using a retarding method. The sample holder includes: a sample placement member on which a first fixing member, a cross-sectional sample as an observation sample, and a second fixing member are placed in contact with each other, and inserted inside the electronic optical lens barrel of an electron microscope; and a voltage introduction means for introducing a voltage to the sample placement member. The sample placement member has a positioning section for positioning the first fixing member, the cross-sectional sample, and the second fixing member onto a placement position. A positioning section positions the first planar surface of the first fixing member and the second planar surface of the second fixing member which are disposed respectively adjacent to the observation surface of the cross-sectional sample, parallel to the observation surface at locations equidistant from the observation surface.