Abstract:
An apparatus is provided. The apparatus generally comprises a plurality of pairs of differential transmission lines. The plurality of pairs of differential transmission lines includes a set of pairs of differential transmission lines with each pair of differential transmission lines from the set of pairs of differential transmission lines including at least one twist to alternate current direction. Also, the plurality of differential transmission lines are arranged such that alternating current directions substantially eliminate cross-talk across the plurality of pairs of differential transmission lines.
Abstract:
Embodiments of the present disclosure are directed towards electro-magnetic interference (EMI) shielding techniques and configurations. In one embodiment, an apparatus includes a first substrate, a die having interconnect structures coupled with the first substrate to route input/output (I/O) signals between the die and the first substrate and a second substrate coupled with the first substrate, wherein the die is disposed between the first substrate and the second substrate and at least one of the first substrate and the second substrate include traces configured to provide electro-magnetic interference (EMI) shielding for the die. Other embodiments may be described and/or claimed.
Abstract:
The present invention provides an electroconductive sheet and a touch panel which do not impair visibility in a vicinity of an electrode terminal in a sensing region. In an electroconductive sheet which has an electrode pattern constructed of a metal thin wire and an electrode terminal that is electrically connected to an end of the electrode pattern, a transmittance of the electrode pattern is 83% or more, and when the transmittance of the electrode pattern is represented by a %, a transmittance of the electrode terminal is controlled to be (a-20)% or more and (a-3)% or less.
Abstract:
Disclosed are a touch window with an improved visibility and a touch device with the same. The touch window includes a substrate; a first sensing electrode aligned on the substrate as a first conductive pattern; and a second sensing electrode aligned on the substrate as a second conductive pattern, wherein the first conductive pattern and the second conductive pattern have mutually different directionalities.
Abstract:
Provided is a patterned conductive film may include a conductive interconnected nano-structure film. The conductive interconnected nano-structure film may include a first region and a second region adjacent to the first region. A conductivity of the first region may be at least 1000 times a conductivity of the second region.
Abstract:
A touch-sensitive device includes a transparent substrate, a touch-sensing structure, a decorative layer, a trace layer, a passivation layer and a sheltering layer. The touch-sensing structure is disposed on the transparent substrate and located in a touch-sensitive region. The decorative layer is disposed on the transparent substrate and located in a non-touch-sensitive region, and the trace layer is disposed on the decorative layer. The passivation layer is disposed on the transparent substrate and at least covers the touch-sensing structure and the trace layer. The sheltering layer is disposed at least on the passivation layer and located in the non-touch-sensitive region.
Abstract:
Buffer structures are provided that can be used to reduce a strain in a conformable electronic system that includes compliant components in electrical communication with more rigid device components. The buffer structures are disposed on, or at least partially embedded in, the conformable electronic system such that the buffer structures overlap with at least a portion of a junction region between a compliant component and a more rigid device component. The buffer structure can have a higher value of Young's modulus than an encapsulant of the conformable electronic system.
Abstract:
The present invention provides an electroconductive sheet and a touch panel which do not impair visibility in a vicinity of an electrode terminal in a sensing region. In an electroconductive sheet which has an electrode pattern constructed of a metal thin wire and an electrode terminal that is electrically connected to an end of the electrode pattern, a transmittance of the electrode pattern is 83% or more, and when the transmittance of the electrode pattern is represented by a %, a transmittance of the electrode terminal is controlled to be (a-20)% or more and (a-3)% or less.
Abstract:
A touch-sensitive device includes a transparent substrate, a touch-sensing structure, a decorative layer, a trace layer, a passivation layer and a sheltering layer. The touch-sensing structure is disposed on the transparent substrate and located in a touch-sensitive region. The decorative layer is disposed on the transparent substrate and located in a non-touch-sensitive region, and the trace layer is disposed on the decorative layer. The passivation layer is disposed on the transparent substrate and at least covers the touch-sensing structure and the trace layer. The sheltering layer is disposed at least on the passivation layer and located in the non-touch-sensitive region.
Abstract:
The present invention relates to electronic components assembly for electrically connecting electronic components to each other, wherein a wiring formed on a surface of a first electronic component and a wiring formed on a surface of a second electronic component face each other, and are bonded to each other with an electric conductor interposed therebetween, so as to electrically connect the first electronic component and the second electronic component. The electric conductor is a resin composition containing solder or conductive filler.