Abstract:
A method of forming a device associated with a via includes forming an opening or via, and forming at least a pair of conducting paths within the via. Also disclosed is a via having at pair of conducting paths therein.
Abstract:
A substrate includes a plurality of insulation layers forming a laminated structure and a built-in capacitor formed in the laminated structure, wherein the laminated structure includes a layer of baked organic polysilane.
Abstract:
The invention relates to a thin film capacitor containing (a) a substrate, (b) a first polymeric film comprising an electrically conductive polymer located on the substrate, (c) a pentoxide layer selected from the group consisting of tantalum pentoxide, or niobium pentoxide, and mixtures thereof, (d) a second polymeric film comprising an electrically conductive polymer located on the pentoxide layer.
Abstract:
A fabricating method of a wiring board provided with passive elements is disclosed. The fabricating method includes coating one or both of resistive paste and dielectric paste on at least any one of first surfaces of a first metal foil and a second metal foil each of which has a first surface and a second surface; arranging an insulating board having thermo-plasticity and thermo-setting properties so as to face the first surface of the first metal foil, and arranging the first surface side of the second metal foil so as to face a surface different from a surface to which the first metal foil faces of the insulating board; forming a double-sided wiring board by stacking, pressurizing and heating the arranged first metal foil, insulating board, and second metal foil, and thereby integrating these; and patterning the first metal foil and/or the second metal foil.
Abstract:
Through an improvement of module size increase due to mounting a single passive element on a substrate and an increase in the mounting cost, to provide a highly reliable, high performance and small sized semiconductor connection substrate which permits to integrate a variety of electronic parts such as capacitors, inductors and resistors in a high density with low cost. The semiconductor connection substrate which connects a semiconductor element to a mounting substrate such as a printed substrate comprises an insulator substrate, a plurality of electrodes having different areas provided on the insulator substrate, one or more elements selected from a capacitor element of dielectric material sandwiched between the electrodes, an inductor element and resistor element, a metal wiring connecting the elements, a metal terminal part of a part of the metal wiring and an organic insulator material covering the elements and the circumference of the metal wiring portion excluding the metal terminal portion.
Abstract:
A capacitor structure is fabricated by forming a pattern of first dielectrics over a foil, forming first electrodes over the first dielectrics, and co-firing the first dielectrics and the first electrodes. Co-firing of the dielectrics and the electrodes alleviates cracking caused by differences in thermal coefficient of expansion (TCE) between the electrodes and the dielectrics. Co-firing also ensures a strong bond between the dielectrics and the electrodes. In addition, co-firing allows multi-layer capacitor structures to be constructed, and allows the capacitor electrodes to be formed from copper.
Abstract:
In a printed wiring board, a plurality of stacked innerlayer panels have capacitors connected in parallel by connecting a first electrode of a first panel with a first electrode of a second panel, and similarly connecting second electrodes of the first and second panels. The innerlayer panel having capacitors connected in parallel provides a high capacitance in a small x-y area. An alternate printed wiring board has a capacitor having a first foil electrode, and second and third electrodes located on opposite sides of the first foil electrode. Yet another printed wiring board has capacitors formed as an array of discrete foil electrodes spaced from an array of discrete printed electrodes. Forming discrete interconnected electrodes allows the electrodes to be fired without excessive thermal coefficient of expansion stresses damaging the electrodes.
Abstract:
A wiring layer for serving as a first electrode layer of a capacitor portion patterned in a predetermined shape on an insulative base member is formed. A resin layer for serving as a dielectric layer of the capacitor portion is formed on a surface of the wiring layer using an electrophoretic process. Another wiring layer for serving as a second electrode layer of the capacitor portion patterned in a predetermined shape by patterning on the insulative base member inclusive of the resin layer is formed.
Abstract:
The invention relates to a thin film capacitor containing (a) a substrate, (b) a first polymeric film comprising an electrically conductive polymer located on the substrate, (c) a pentoxide layer selected from the group consisting of tantalum pentoxide, or niobium pentoxide, and mixtures thereof, (d) a second polymeric film comprising an electrically conductive polymer located on the pentoxide layer.
Abstract:
The present invention relates to a method for producing an electrical subassembly comprising a circuit carrier and at least one passive component which is integrated into the circuit carrier and comprises an electrically functional material. For providing an improved method for manufacturing an electrical subassembly comprising a circuit carrier and at least one passive component integrated into the circuit carrier, the method ensuring a rapid and inexpensive manufacture on the one hand and permitting a high flexibility on the other hand in the selection of the electrically functional materials involved, the method comprises the following steps: structuring the circuit carrier, at least one recess being created for the passive element; introducing the electrically functional material in a raw state into the recess of the circuit carrier; converting the electrically functional material from the raw state into a final state by supplying energy.