Abstract:
Electronic devices include a substrate with first and second pairs of conductive traces extending in or on the substrate. A first conductive interconnecting member extends through a hole in the substrate and communicates electrically with a first trace of each of the first and second pairs, while a second conductive interconnecting member extends through the hole and communicates electrically with the second trace of each of the first and second pairs. The first and second interconnecting members are separated from one another by a distance substantially equal to a distance separating the conductive traces in each pair. Electronic device assemblies include a transmitting device configured to transmit a differential signal through a conductive structure to a receiving device. The conductive structure includes first and second pair of conductive traces with first and second interconnecting members providing electrical communication therebetween.
Abstract:
Computer modules with small thicknesses and associated methods of manufacturing are disclosed. In one embodiment, the computer modules can include a module substrate having a module material and an aperture extending at least partially into the module material. The computer modules can also include a microelectronic package carried by the module substrate. The microelectronic package includes a semiconductor die carried by a package substrate. At least a portion of the semiconductor die extends into the substrate material via the aperture.
Abstract:
Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices are disclosed. In one embodiment, a system comprises a semiconductor component including an interposer substrate, a microelectronic die over the interposer substrate, and a connection structure composed of a volume of solder material between the interposer substrate and the microelectronic die. The connection structure can include at least one of (a) a single, unitary structure covering approximately all of the back side of the microelectronic die, and (b) a structure electrically isolated from internal active features of the microelectronic die. In some embodiments, the connection structure can be positioned to provide generally consistent stress distribution within the system.
Abstract:
Computer modules with small thicknesses and associated methods of manufacturing are disclosed. In one embodiment, the computer modules can include a module substrate having a module material and an aperture extending at least partially into the module material. The computer modules can also include a microelectronic package carried by the module substrate. The microelectronic package includes a semiconductor die carried by a package substrate. At least a portion of the semiconductor die extends into the substrate material via the aperture.
Abstract:
Computer modules with small thicknesses and associated methods of manufacturing are disclosed. In one embodiment, the computer modules can include a module substrate having a module material and an aperture extending at least partially into the module material. The computer modules can also include a microelectronic package carried by the module substrate. The microelectronic package includes a semiconductor die carried by a package substrate. At least a portion of the semiconductor die extends into the substrate material via the aperture.
Abstract:
Microelectronic packages with leadframes, including leadframes configured for stacked die packages, and associated systems and methods are disclosed. A system in accordance with one embodiment includes a support member having first package bond sites electrically coupled to leadframe bond sites. A microelectronic die can be carried by the support member and electrically coupled to the first packaged bond sites. A leadframe can be attached to the leadframe bond sites so as to extend adjacent to the microelectronic die, with the die positioned between the leadframe and the support member. The leadframe can include second package bond sites facing away from the first package bond sites. An encapsulant can at least partially surround the leadframe and the microelectronic die, with the first and second package bond sites accessible from outside the encapsulant.
Abstract:
There is provided a semiconductor device assembly with an interposer and method of manufacturing the same. More specifically, in one embodiment, there is provided a semiconductor device assembly comprising a semiconductor substrate, at least one semiconductor die attached to the semiconductor substrate, an interposer disposed on the semiconductor die, and a controller attached to the interposer. There is also provided a method of manufacturing comprising forming a first subassembly by coupling a substrate and a semiconductor die, and forming second subassembly by attaching a controller to an interposer, and coupling the first subassembly to the second subassembly.
Abstract:
A method for fabricating a chip-scale board-on-chip substrate, or redistribution element, includes forming conductive planes on opposite sides of a substrate. A first of the conductive planes includes two sets of bond fingers, conductive traces that extend from a first set of the bond fingers, and two sets of redistributed bond pads, including a first set to which the conductive traces lead. The second conductive plane includes conductive traces that extend from locations that are opposite from the second set of bond fingers toward locations that are opposite from the locations of the second set of redistributed bond pads. Conductive vias are formed through the second set of bond fingers to the conductive traces of the second conductive plane. In addition, conductive vias are also formed to electrically connect the conductive vias of the second conductive plane to their corresponding redistributed bond pads in the first conductive plane.
Abstract:
Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices are disclosed. In one embodiment, a system comprises a semiconductor component including an interposer substrate, a microelectronic die over the interposer substrate, and a connection structure composed of a volume of solder material between the interposer substrate and the microelectronic die. The connection structure can include at least one of (a) a single, unitary structure covering approximately all of the back side of the microelectronic die, and (b) a structure electrically isolated from internal active features of the microelectronic die. In some embodiments, the connection structure can be positioned to provide generally consistent stress distribution within the system.
Abstract:
Packaged semiconductor components having substantially rigid support member are disclosed. The packages can include a semiconductor die and a support member proximate to the semiconductor die. The support member is at least substantially rigid. The packages can further include an adhesive between the support member and the semiconductor die and adhesively attaching the support member to the semiconductor die. The packages can also include a substrate carrying the semiconductor die and the support member attached to the semiconductor die.