Abstract:
An image sensor module includes a circuit board, image sensor, electronic component assembly, and cable assembly. The circuit board includes a center section located between two end sections. The end sections each extend away from the center section and define an interior area there between. The image sensor is secured to an outer face of the circuit board in the center section with sensor contact fingers being connected at the circuit board outer face in one or both end sections. The electronic component arrangement is mounted on an inner face of the circuit board in the center section. A number of wires of the cable assembly extend through an end gap between the circuit board end sections and are connected to the inner face of the circuit board so as to overlap with the sensor contact fingers along a module longitudinal axis.
Abstract:
There is provided a multilayer ceramic electronic component including: a multilayer ceramic capacitor (MLCC) including first and second external electrodes disposed to be spaced apart from one another on a mounting surface thereof; and first and second terminal electrodes including upper horizontal portions disposed on lower surfaces of the first and second external electrodes, lower horizontal portions disposed to be spaced apart from the upper horizontal portions downwardly, and curved vertical portions connecting one ends of the upper horizontal portions and one ends of the lower horizontal portions, having “⊂” and “⊃” shapes, and disposed on the mounting surface of the MLCC in a facing manner.
Abstract:
The present embodiments relate to providing electrical connectivity to electric-powered components mounted in parallel on a wiring board. An electrical apparatus is provided in which electricity is conducted from an electrically conductive member onto first and second electrically conductive pathways, of a wiring board through the use of first and second resiliently-deformable electrically conductive connectors. First and second electric-powered components are mounted to the respective first and second electrically conductive pathways. The first and second resiliently-deformable electrically conductive connectors are compressed between the electrically conductive member and the wiring board such that the first connector provides an electrical connection between the conductive member and the first electrically conductive pathway, and the second connector provides an electrical connection between the conductive member and the second electrically conductive pathway.
Abstract:
A holder structure for mounting light indicators on printed circuit boards using surface mount technology at a position elevated above the surface of the board is provided with a body member including a top wall, a bottom wall, opposed sidewalls, a front wall, and a rear wall, all being formed integrally together. Two spaced-apart recesses are formed and aligned vertically in the front wall of the body member terminating in respective first and second interior wall portions. The first interior wall portion has openings formed on diametrically opposed sides of a vertical partition and lying in a horizontal plane parallel to the bottom wall. The second interior wall portion has openings formed on diametrically opposed sides of a transverse partition and lying in a plane which is rotated a predetermined number of degrees from a vertical plane perpendicular to the bottom wall.
Abstract:
A light source module includes a substrate, a circuit, at least one first light source unit, and at least one second light source. The circuit is disposed on the substrate and includes a first signal channel and a second signal channel. The first light source unit is disposed on a bearing surface, wherein the first light source unit has a first A pin and a first B pin having different polarity from the first A pin. The second light source unit is disposed on the bearing surface and is adjacent to the first light source unit, wherein the second light source unit has a second A pin and a second B pin having different polarity from the second A pin, and the second A pin is adjacent to the first A pin of the first light source unit and has a same polarity with the first A pin.
Abstract:
Disclosed is wiring substrate and method of manufacturing thereof, the wiring substrate including a substrate having a high thermal conductive layer, in which at least one of a front surface and a rear surface of the substrate is a mounting surface for a variety of components; a window section formed in the substrate; and a connection terminal extended from an inside surface portion of the window section and bending in a direction perpendicular to a surface of the substrate.
Abstract:
Disclosed is a surface mount device to be mounted on a base member, including plural lead units, each of the plural lead units including, a lead including a body portion and a foot formed at an end of the lead; a solder portion formed at the foot of the lead to protrude toward the direction of the base member to have a summit portion, and a diffusion prevention portion provided on the lead for preventing a diffusion of a solder along the body portion of the lead.
Abstract:
A multilayer ceramic component including a multilayer ceramic capacitor including first and second external electrodes disposed on a mounting surface of a ceramic body; and first and second terminal electrodes each including an upper horizontal part disposed on a lower surface of the respective external electrode, a lower horizontal part disposed below the upper horizontal part and spaced apart from the upper horizontal part, and a connecting part connecting the upper horizontal part and the lower horizontal part, the connecting part having a plurality of openings alternately facing opposite end surfaces of the ceramic body.
Abstract:
An electronic device may include a surface mount integrated circuit (IC) package to be attached to a printed circuit board (PCB). The surface mount IC package may include at least one IC and an encapsulating material surrounding the at least one IC and having a component receiving cavity defined therein on a bottom surface thereof to be positioned adjacent the PCB. The surface mount IC package may also include electrical leads coupled to the at least one IC and extending outwardly from the encapsulating material to be coupled to the PCB. The electronic device may also include at least one electronic component carried within the component receiving cavity and that includes electrical contacts to be coupled to the PCB.
Abstract:
A power module (100) arranged to receive an input voltage and to deliver an output voltage, comprising a supporting layer (110) with first and second main surfaces (111, 109) and a rim (122) surrounding the main surfaces. The power module (100) also comprises at least one component (112, 113, 114, 115) on or in the supporting layer (110) which protrudes a first perpendicular distance (d1) from one of the main surfaces. The power module (100) additionally comprises connectors (116-119; 120-123) for attaching the power module (100) to an external component (10). The one or more connectors (116-119; 120-123) protrude a second distance (d2) from said rim (122) in a perpendicular direction from one of the main surfaces (111, 109), so that the at least one component is at a predefined distance (d4, d5) from the external component (10) when the power module is attached to the external component (10).