TECHNOLOGIES FOR BLIND MATING FOR SLED-RACK CONNECTIONS

    公开(公告)号:US20180024306A1

    公开(公告)日:2018-01-25

    申请号:US15396041

    申请日:2016-12-30

    Abstract: Technologies for blind mating of optical connectors in a rack of a data center are disclosed. In the illustrative embodiment, a sled can be slid into a rack and an optical connector on the sled will blindly mate with a corresponding optical connector on the rack. The illustrative optical connector on the sled includes two guide post receivers which mate with corresponding guide posts on the optical connector on the rack such that, when mated, optical fibers of the optical connector on the rack will be aligned and optically coupled with corresponding optical fibers on the optical connector of the sled.

    Integrated android and windows device

    公开(公告)号:US10922148B2

    公开(公告)日:2021-02-16

    申请号:US16091206

    申请日:2016-04-26

    Abstract: Techniques for implementing assess to Android applications and native Window application on Android devices and systems. A processor board includes a processor that is configured to run a full version of a Windows operating system and Windows applications. The processor board is configured to be communicatively coupled to the processor board in an Android device, such as a Smartphone or tablet. Upon operations and when the processor board is communicatively coupled to the Android device, a user of the Android device is enabled to selectively run Android applications and Windows applications, with the Windows applications being executed natively on the processor board. The processor board may be implemented in a computing card that is approximately the size of a credit card or smaller, which in turn may be coupled to the Android device via a backpack or similar means. The processor board may also be disposed within the same housing as the Android device.

    Cableless connection apparatus and method for communication between chassis

    公开(公告)号:US10541941B2

    公开(公告)日:2020-01-21

    申请号:US15947028

    申请日:2018-04-06

    Abstract: Apparatus and methods for cableless connection of components within chassis and between separate chassis. Pairs of Extremely High Frequency (EHF) transceiver chips supporting very short length millimeter-wave wireless communication links are configured to pass radio frequency signals through holes in one or more metal layers in separate chassis and/or frames, enabling components in the separate chassis to communicate without requiring cables between the chassis. Various configurations are disclosed, including multiple configurations for server chassis, storage chassis and arrays, and network/switch chassis. The EHF-based wireless links support link bandwidths of up to 6 gigabits per second, and may be aggregated to facilitate multi-lane links.

    Rack level pre-installed interconnect for enabling cableless server/storage/networking deployment

    公开(公告)号:US10374726B2

    公开(公告)日:2019-08-06

    申请号:US15874499

    申请日:2018-01-18

    Abstract: Apparatus and methods for rack level pre-installed interconnect for enabling cableless server, storage, and networking deployment. Plastic cable waveguides are configured to couple millimeter-wave radio frequency (RF) signals between two or more Extremely High Frequency (EHF) transceiver chips, thus supporting millimeter-wave wireless communication links enabling components in the separate chassis to communicate without requiring wire or optical cables between the chassis. Various configurations are disclosed, including multiple configurations for server chassis, storage chassis and arrays, and network/switch chassis. A plurality of plastic cable waveguide may be coupled to applicable support/mounting members, which in turn are mounted to a rack and/or top-of-rack switches. This enables the plastic cable waveguides to be pre-installed at the rack level, and further enables racks to be installed and replaced without requiring further cabling for the supported communication links. The communication links support link bandwidths of up to 6 gigabits per second, and may be aggregated to facilitate multi-lane links.

Patent Agency Ranking