Abstract:
A three-dimensional flash memory system is disclosed. The system comprises a memory array comprising a plurality of stacked dies, where each die comprises memory cells. The system further comprises a plurality of pins, where the function of at least some of the pins can be configured using a mechanism that selects a function for those pins from a plurality of possible functions.
Abstract:
A method of forming a memory device on a substrate having memory, core and HV device areas. The method includes forming a pair of conductive layers in all three areas, forming an insulation layer over the conductive layers in all three areas (to protect the core and HV device areas), and then etching through the insulation layer and the pair of conductive layers in the memory area to form memory stacks. The method further includes forming an insulation layer over the memory stacks (to protect the memory area), removing the pair of conductive layers in the core and HV device areas, and forming conductive gates disposed over and insulated from the substrate in the core and HV device areas.
Abstract:
The present invention relates to a circuit and method for low power operation in a flash memory system. In disclosed embodiments of a selection-decoding circuit path, pull-up and pull-down circuits are used to save values at certain output nodes during a power save or shut down modes, which allows the main power source to be shut down while still maintaining the values.
Abstract:
A method of forming a pair of memory cells that includes forming a polysilicon layer over and insulated from a semiconductor substrate, forming a pair of conductive control gates over and insulated from the polysilicon layer, forming first and second insulation layers extending along inner and outer side surfaces of the control gates, removing portions of the polysilicon layer adjacent the outer side surfaces of the control gates, forming an HKMG layer on the structure and removing portions thereof between the control gates, removing a portion of the polysilicon layer adjacent the inner side surfaces of the control gates, forming a source region in the substrate adjacent the inner side surfaces of the control gates, forming a conductive erase gate over and insulated from the source region, forming conductive word line gates laterally adjacent to the control gates, and forming drain regions in the substrate adjacent the word line gates.
Abstract:
A method of forming a semiconductor device with memory cells and logic devices on the same silicon-on-insulator substrate. The method includes providing a substrate that includes silicon, a first insulation layer directly over the silicon, and a silicon layer directly over the first insulation layer. Silicon is epitaxially grown on the silicon layer in a first (memory) area of the substrate and not in a second (logic device) area of the substrate such that the silicon layer is thicker in the first area of the substrate relative to the second area of the substrate. Memory cells are formed in the first area of the substrate, and logic devices are formed in the second area of the substrate.
Abstract:
A method of forming a pair of memory cells that includes forming a polysilicon layer over and insulated from a semiconductor substrate, forming a pair of conductive control gates over and insulated from the polysilicon layer, forming first and second insulation layers extending along inner and outer side surfaces of the control gates, removing portions of the polysilicon layer adjacent the outer side surfaces of the control gates, forming an HKMG layer on the structure and removing portions thereof between the control gates, removing a portion of the polysilicon layer adjacent the inner side surfaces of the control gates, forming a source region in the substrate adjacent the inner side surfaces of the control gates, forming a conductive erase gate over and insulated from the source region, forming conductive word line gates laterally adjacent to the control gates, and forming drain regions in the substrate adjacent the word line gates.
Abstract:
The disclosed embodiments comprise a flash memory device and a method of programming the device in a way that reduces degradation of the device compared to prior art methods.
Abstract:
A non-volatile memory device comprises a semiconductor substrate of a first conductivity type. An array of non-volatile memory cells is located in the semiconductor substrate and arranged in a plurality of rows and columns. Each memory cell comprises a first region on a surface of the semiconductor substrate of a second conductivity type, and a second region on the surface of the semiconductor substrate of the second conductivity type. A channel region is between the first region and the second region. A word line overlies a first portion of the channel region and is insulated therefrom, and adjacent to the first region and having little or no overlap with the first region. A floating gate overlies a second portion of the channel region, is adjacent to the first portion, and is insulated therefrom and is adjacent to the second region. A coupling gate overlies the floating gate. A bit line is connected to the first region. During the operations of program, read, or erase, a negative voltage can be applied to the word lines and/or coupling gates of the selected or unselected memory cells.