Abstract:
A through wafer via structure. The structure includes: a semiconductor substrate having a top surface and an opposite bottom surface; and an array of through wafer vias comprising at least one electrically conductive through wafer via and at least one electrically non-conductive through wafer via, each through wafer via of the array of through wafer vias extending from the top surface of the substrate to between greater than halfway to and all the way to the bottom surface of the substrate. Also methods for fabricating the though wafer via structure.
Abstract:
A metallized feature is formed in the top surface of a substrate, and a handling plate is attached to the substrate. The substrate is then thinned at the bottom surface thereof to expose the bottom of the feature, to form a conducting through-via. The substrate may comprise a chip having a device (e.g. DRAM) fabricated therein. The process therefore permits vertical integration with a second chip (e.g. a PE chip). The plate may be a wafer attached to the substrate using a vertical stud/via interconnection. The substrate and plate may each have devices fabricated therein, so that the process provides vertical wafer-level integration of the devices.
Abstract:
A process is described for semiconductor device integration at chip level or wafer level, in which vertical connections are formed through a substrate. A metallized feature is formed in the top surface of a substrate, and a handling plate is attached to the substrate. The substrate is then thinned at the bottom surface thereof to expose the bottom of the feature, to form a conducting through-via. The substrate may comprise a chip having a device (e.g. DRAM) fabricated therein. The process therefore permits vertical integration with a second chip (e.g. a PE chip). The plate may be a wafer attached to the substrate using a vertical stud/via interconnection. The substrate and plate may each have devices fabricated therein, so that the process provides vertical wafer-level integration of the devices.
Abstract:
In one aspect, the invention encompasses a method of fabricating an interconnect for a semiconductor component. A semiconductor substrate is provided, and an opening is formed which extends entirely through the substrate. A first material is deposited along sidewalls of the opening at a temperature of less than or equal to about 200° C. The deposition can comprise one or both of atomic layer deposition and chemical vapor deposition, and the first material can comprise a metal nitride. A solder-wetting material is formed over a surface of the first material. The solder-wetting material can comprise, for example, nickel. Subsequently, solder is provided within the opening and over the solder-wetting material.
Abstract:
A process is described for semiconductor device integration at chip level or wafer level, in which vertical connections are formed through a substrate. A metallized feature is formed in the top surface of a substrate, and a handling plate is attached to the substrate. The substrate is then thinned at the bottom surface thereof to expose the bottom of the feature, to form a conducting through-via. The substrate may comprise a chip having a device (e.g. DRAM) fabricated therein. The process therefore permits vertical integration with a second chip (e.g. a PE chip). The plate may be a wafer attached to the substrate using a vertical stud/via interconnection. The substrate and plate may each have devices fabricated therein, so that the process provides vertical wafer-level integration of the devices.
Abstract:
Devices and techniques include process steps for preparing various microelectronic components for bonding, such as for direct bonding without adhesive. The processes include providing a first bonding surface on a first surface of the microelectronic components, bonding a handle to the prepared first bonding surface, and processing a second surface of the microelectronic components while the microelectronic components are gripped at the handle. In some embodiments, the processes include removing the handle from the first bonding surface, and directly bonding the microelectronic components at the first bonding surface to other microelectronic components.
Abstract:
A semiconductor die and a method for manufacturing a semiconductor die are disclosed. In an embodiment a semiconductor die includes a base body having a semiconductor material and a surface with two contact areas having contact pads at which the semiconductor die is electrically contactable and two metal caps arranged directly at the contact pads.
Abstract:
A semiconductor package and a method of fabricating the same. The semiconductor package includes a lower structure including a first lower conductive pad disposed on an upper surface thereof, a first semiconductor chip disposed on the lower structure, the first semiconductor chip including a first chip conductive pad disposed on a lower surface thereof, a solder ball connecting the first lower conductive pad and the first chip conductive pad, a photosensitive insulating layer filling a space between the lower structure and the first semiconductor chip, and a first organic insulating layer covering a side surface of the first chip conductive pad.
Abstract:
A method includes depositing a first dielectric layer on a first substrate of a first device die, etching the first dielectric layer to form a trench, depositing a metallic material in the trench and on a top surface of the first dielectric layer, and performing a chemical mechanical polish (CMP) process to remove a portion of the metallic material from the top surface of the first dielectric layer to form a first metal pad. After the performing of the CMP process, the method selectively etches the first metal pad to form recesses at an edge portion of the first metal pad, deposits a second dielectric layer on a second substrate of a second device die, forms a second metal pad in the second dielectric layer, and bonds the second device die to the first device die.
Abstract:
Devices and techniques include process steps for preparing various microelectronic components for bonding, such as for direct bonding without adhesive. The processes include providing a first bonding surface on a first surface of the microelectronic components, bonding a handle to the prepared first bonding surface, and processing a second surface of the microelectronic components while the microelectronic components are gripped at the handle. In some embodiments, the processes include removing the handle from the first bonding surface, and directly bonding the microelectronic components at the first bonding surface to other microelectronic components.