Abstract:
Embodiments of the present disclosure are directed to an interconnect cable including a edge finger connector, and associated configurations and methods. The edge finger connector may be disposed at a first end of the interconnect cable and may connect the interconnect cable to an edge finger included in or coupled to a package substrate. The package substrate may be included in a processor package assembly, and a processor may be mounted on the substrate. The interconnect cable may include one or more elongate conductors, with contacts directly coupled to respective conductors. A second connector may be disposed at a second end of the interconnect cable, and may couple the interconnect cable to a small form-factor pluggable (SFP) case that is configured to connect the interconnect cable to an SFP cable. Other embodiments may be described and claimed.
Abstract:
Embodiments related to integrated circuit (IC) connectors are described. In some embodiments, an IC assembly may include an IC package substrate, an intermediate member, and a male connector. The IC package substrate may have first signal contacts on a top or bottom surface, and the bottom surface may have second signal contacts for coupling with a socket on a circuit board. The intermediate member may have a first end coupled to the first signal contacts and a second end extending beyond the side surface. The male connector may be disposed at the second end of the intermediate member, and may have signal contacts coupled to the signal contacts of the intermediate member. The male connector may be mateable with a female connector when the female connector is brought into engagement in a direction parallel to the axis of the intermediate member. Other embodiments may be disclosed and/or claimed.
Abstract:
A double-mated edge finger connector that is configured to double the connector density without resorting to a reduction in pitch. A first connector defines a first slot configured to receive and permit horizontal displacement of an edge finger of a second board relative thereto, while a second connector defines a second slot configured to receive and permit horizontal displacement of an edge finger of a first board relative thereto, to thereby establish an electrical connection between the first board and the second board.
Abstract:
This disclosure relates generally to an electronic package and methods that include an electrically conductive pad, a package insulator layer including a substantially non-conductive material, the package insulator layer being substantially planar, and a via. The via may be formed within the package insulator layer and electrically coupled to the electrically conductive pad. The via may include a conductor extending vertically through at least part of the package insulator layer and having a first end proximate the electrically conductive pad and a second end opposite the first end and a finish layer secured to the second end of the conductor, the finish layer including a gold compound.
Abstract:
The present disclosure relates to the field of fabricating microelectronic packages, wherein magnetic particles distributed within a solder paste may be used to form a magnetic intermetallic compound interconnect. The intermetallic compound interconnect may be exposed to a magnetic field, which can heat a solder material to a reflow temperature for attachment of microelectronic components comprising the microelectronic packages.
Abstract:
A coating for a microelectronic device comprises a polymer film (131) containing a filler material (232). The polymer film has a thermal conductivity greater than 3 W/m·K and a thickness (133) that does not exceed 10 micrometers. The polymer film may be combined with a dicing tape (310) to form a treatment (300) that simplifies a manufacturing process for a microelectronic package (100) and may be used in order to manage a thermal profile of the microelectronic device.
Abstract:
The present disclosure relates to the field of fabricating microelectronic packages, wherein microelectronic components of the microelectronic packages may have sintered conductive vias comprising sintered metal and magnetic particles.
Abstract:
Methods and associated structures of forming underfill material are described. Those methods may include applying an underfill to an interconnect structure comprising residue from a no clean flux, wherein the underfill comprises at least one of a functionalized nanofiller and a micron-sized filler.
Abstract:
A semiconductor package is described. The semiconductor package includes a substrate and an integrated heat spreader disposed above and coupled with the substrate. A cavity is disposed between the substrate and the integrated heat spreader. A semiconductor die is disposed above the substrate and in the cavity. An array of first-level solder joints is disposed between the substrate and the semiconductor die. A layer of magnetic particle-based composite material is also disposed in the cavity.
Abstract:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods and structures may include attaching a device to a patch substrate, wherein the assembled device and patch substrate comprise a warpage, attaching the assembled device and patch substrate to an interposer to form a package structure, and then reflowing the package structure at a temperature below about 200 degrees Celsius to form a substantially flat package structure.