Abstract:
Methods and systems are described for determining floating body delay effects in an SOI wafer, wherein test apparatus is provided in a wafer comprising a plurality of floating body devices fabricated in series in the wafer, and a pulse generation circuit providing a pulse output corresponding to a delay time associated with the floating body chain according to an input pulse edge and a propagated pulse edge from the floating body devices.
Abstract:
Methods are described for characterizing floating body delay effects in SOI wafers comprising providing a pulse edge to a floating body and a tied body chain in the wafer, storing tied body chain data according to one or more of the floating body devices, and characterizing the floating body delay effects according to the stored tied body chain data. Test apparatus are also described comprising a floating body chain including a plurality of series connected floating body inverters or NAND gates fabricated in the wafer and a tied body chain comprising a plurality of series connected tied body devices to in the wafer. Storage devices are coupled with the tied body devices and with one or more of the floating body devices and operate to store tied body chain data from the tied body devices according to one or more signals from floating body chain.
Abstract:
A novel, low-temperature metal deposition method which is suitable for depositing a metal film on a substrate, such as in the fabrication of metal-insulator-metal (MIM) capacitors, is disclosed. The method includes depositing a metal film on a substrate using a deposition temperature of less than typically about 270 degrees C. The resulting metal film is characterized by enhanced thickness uniformity and reduced grain agglomeration which otherwise tends to reduce the operational integrity of a capacitor or other device of which the metal film is a part. Furthermore, the metal film is characterized by intrinsic breakdown voltage (Vbd) improvement.
Abstract:
A method of fabricating polysilicon patterns. The method includes depositing polysilicon on a substrate. The polysilicon may be doped or pre-doped depending upon the application. A mask layer is applied and patterned. Thereafter, the polysilicon is etched to form the polysilicon patterns and an oxidizing step is performed. The mask layer is removed after the oxidizing step is performed.
Abstract:
A real-time and in-line process control system maintains stable plating performance in copper electrochemical plating IC devices by using a real time, on-line programmable controller. Two or more valves to direct the flow of the electrolyte from the electroplating cell back to the reservoir connect an alternative carbon-filter as well as a mirco-filter. The programmable controller controls the operation of at least two in-line valves to direct the flow of the electrolyte within the system.
Abstract:
A package assembly including a semiconductor die electrically coupled to a substrate by an interconnected joint structure. The semiconductor die includes a bump overlying a semiconductor substrate, and a molding compound layer overlying the semiconductor substrate and being in physical contact with a first portion of the bump. The substrate includes a no-flow underfill layer on a conductive region. A second portion of the bump is in physical contact with the no-flow underfill layer to form the interconnected joint structure.
Abstract:
A device includes a substrate, a metal pad over the substrate, and a passivation layer having a portion over the metal pad. A post-passivation interconnect (PPI) is electrically coupled to the metal pad, wherein the PPI includes a portion over the metal pad and the passivation layer. A polymer layer is over the PPI. A solder ball is over the PPI. A compound includes a portion adjoining the solder ball and the polymer layer, wherein the compound includes flux and a polymer.
Abstract:
Semiconductor devices packages and methods are disclosed. In one embodiment, a package for a semiconductor device includes a substrate and a contact pad disposed on a first surface of the substrate. The contact pad has a first side and a second side opposite the first side. A conductive trace is coupled to the first side of the contact pad, and an extension of the conductive trace is coupled to the second side of the contact pad. A plurality of bond pads is disposed on a second surface of the substrate.
Abstract:
A method of fabricating polysilicon patterns. The method includes depositing polysilicon on a substrate. The polysilicon may be doped or pre-doped depending upon the application. A mask layer is applied and patterned. Thereafter, the polysilicon is etched to form the polysilicon patterns and an oxidizing step is performed. The mask layer is removed after the oxidizing step is performed.
Abstract:
Provided is a multi-segment rotation robotic arm which contains a plurality of concatenated robotic arm segments which can rotate 360 degrees along an adjacent oblique section thereof. Any one of the concatenated robotic arm segments of the multi-segment rotation robotic arm can be arbitrarily concatenate in accordance with use requirements. When the concatenated robotic arm segments rotate relatively, they can rotate 360 degrees without affecting the electric supply, and can also reduce the volume increase by rotated joints. Therefore, the multi-segment rotation robotic arm of the present invention can effectively adapt to complex and tortuous spaces in the body cavity to reduce the possibility of expanding the opening of the minimally invasive surgery and causing damage to organs or tissues in the body cavity.