Abstract:
A microelectronic component (110, 120) has a contact pad (110C, 120C, 920C) recessed in a cavity (410) and covered by underfill tape (130). The cavity has a void (410V) below the underfill tape. A protruding contact pad of another microelectronic component ruptures the underfill tape to enter the cavity and bond to the recessed contact pad. The void helps in rupturing the underfill tape, thus reducing the amount of underfill residue between the two contact pads and improving the contact resistance. Also provided is a microelectronic component having a substrate with a cavity and having a through-substrate via extending into the cavity. Other features are also provided.
Abstract:
An apparatus relating generally to a substrate is disclosed. In such an apparatus, the substrate has a first surface and a second surface opposite the first surface. The first surface and the second surface define a thickness of the substrate. A via structure extends from the first surface of the substrate to the second surface of the substrate. The via structure has a first terminal at or proximate to the first surface and a second terminal at or proximate to the second surface provided by a conductive member of the via structure extending from the first terminal to the second terminal. A barrier layer of the via structure is disposed between at least a portion of the conductive member and the substrate. The barrier layer has a conductivity configured to offset a capacitance between the conductive member and the substrate when a signal is passed through the conductive member of the via structure.
Abstract:
To reduce warpage in at least one area of a wafer, a stress/warpage management layer (810) is formed to over-balance and change the direction of the existing warpage. For example, if the middle of the area was bulging up relative to the area's boundary, the middle of the area may become bulging downward, or vice versa. Then the stress/warpage management layer is processed to reduce the over-balancing. For example, the stress/management layer can be debonded from the wafer at selected locations, or recesses can be formed in the layer, or phase changes can be induced in the layer. In other embodiments, this layer is tantalum-aluminum that may or may not over-balance the warpage; this layer is believed to reduce warpage due to crystal-phase-dependent stresses which dynamically adjust to temperature changes so as to reduce the warpage (possibly keeping the wafer flat through thermal cycling). Other features are also provided.
Abstract:
An interposer (110) has contact pads at the top and/or bottom surfaces for connection to circuit modules (e.g. ICs 112). The interposer includes a substrate made of multiple layers (110.i). Each layer can be a substrate (110S), possibly a ceramic substrate, with circuitry. The substrates extend vertically. Multiple interposers are fabricated in a single structure (310) made of vertical layers (310.i) corresponding to the interposers' layers. The structure is diced along horizontal planes (314) to provide the interposers. An interposer's vertical conductive lines (similar to through-substrate vias) can be formed on the substrates' surfaces before dicing and before all the substrates are attached to each other. Thus, there is no need to make through-substrate holes for the vertical conductive lines. Non-vertical features can also be formed on the substrates' surfaces before the substrates are attached to each other. Other embodiments are also provided.
Abstract:
In one embodiment, a method for making a 3D Metal-Insulator-Metal (MIM) capacitor includes providing a substrate having a surface, forming an array of upstanding rods or ridges on the surface, depositing a first layer of an electroconductor on the surface and the array of rods or ridges, coating the first electroconductive layer with a layer of a dielectric, and depositing a second layer of an electroconductor on the dielectric layer. In some embodiments, the array of rods or ridges can be made of a photoresist material, and in others, can comprise bonded wires.
Abstract:
A contact pad includes a solder-wettable porous network (310) which wicks the molten solder (130) and thus restricts the lateral spread of the solder, thus preventing solder bridging between adjacent contact pads.
Abstract:
In some embodiments, to increase the height-to-pitch ratio of a solder connection that connects different structures with one or more solder balls, only a portion of a solder ball's surface is melted when the connection is formed on one structure and/or when the connection is being attached to another structure. In some embodiments, non-solder balls are joined by an intermediate solder ball (140i). A solder connection may be surrounded by a solder locking layer (1210) and may be recessed in a hole (1230) in that layer. Other features are also provided.
Abstract:
An apparatus relates generally to a three-dimensional stacked integrated circuit. In such an apparatus, the three-dimensional stacked integrated circuit has at least a first die and a second die interconnected to one another using die-to-die interconnects. A substrate of the first die has at least one thermal via structure extending from a lower surface of the substrate toward a well of the substrate without extending to the well and without extending through the substrate. A first end of the at least one thermal via structure is at least sufficiently proximate to the well of the substrate for conduction of heat away therefrom. The substrate has at least one through substrate via structure extending from the lower surface of the substrate to an upper surface of the substrate. A second end of the at least one thermal via structure is coupled to at least one through die via structure of the second die for thermal conductivity.
Abstract:
A method of forming a semiconductor package includes providing a substrate having one or more conductive elements disposed therein. Each conductive element extends from a first surface of the substrate toward a second surface of the substrate extending beyond the second surface. The second surface comprises one or more substrate regions not occupied by a conductive element. A first die is attached within a substrate region, and the first die is coupled to at least one of the conductive elements. The first die may be coupled to at least one of the conductive elements by a wire bond connection. Alternatively, an RDL is formed over the second surface, and the first die is coupled to at least one conductive element through the RDL. A second die may be attached to an outer surface of the RDL, and the second die is electrically coupled to the first die through the RDL.
Abstract:
To reduce warpage in at least one area of a wafer, a stress/warpage management layer (810) is formed to over-balance and change the direction of the existing warpage. For example, if the middle of the area was bulging up relative to the area's boundary, the middle of the area may become bulging downward, or vice versa. Then the stress/warpage management layer is processed to reduce the over-balancing. For example, the stress/management layer can be debonded from the wafer at selected locations, or recesses can be formed in the layer, or phase changes can be induced in the layer. In other embodiments, this layer is tantalum-aluminum that may or may not over-balance the warpage; this layer is believed to reduce warpage due to crystal-phase-dependent stresses which dynamically adjust to temperature changes so as to reduce the warpage (possibly keeping the wafer flat through thermal cycling). Other features are also provided.