Abstract:
Dies (110) with integrated circuits are attached to a wiring substrate (120), possibly an interposer, and are protected by a protective substrate (410) attached to a wiring substrate. The dies are located in cavities in the protective substrate (the dies may protrude out of the cavities). In some embodiments, each cavity surface puts pressure on the die to strengthen the mechanical attachment of the die the wiring substrate, to provide good thermal conductivity between the dies and the ambient (or a heat sink), to counteract the die warpage, and possibly reduce the vertical size. The protective substrate may or may not have its own circuitry connected to the dies or to the wiring substrate. Other features are also provided.
Abstract:
Dies (110) with integrated circuits are attached to a wiring substrate (120), possibly an interposer, and are protected by a protective substrate (410) attached to a wiring substrate. The dies are located in cavities in the protective substrate (the dies may protrude out of the cavities). In some embodiments, each cavity surface puts pressure on the die to strengthen the mechanical attachment of the die the wiring substrate, to provide good thermal conductivity between the dies and the ambient (or a heat sink), to counteract the die warpage, and possibly reduce the vertical size. The protective substrate may or may not have its own circuitry connected to the dies or to the wiring substrate. Other features are also provided.
Abstract:
Die (110) and/or undiced wafers and/or multichip modules (MCMs) are attached on top of an interposer (120) or some other structure (e.g. another integrated circuit) and are covered by an encapsulant (160). Then the interposer is thinned from below. Before encapsulation, a layer (410) more rigid than the encapsulant is formed on the interposer around the die to reduce or eliminate interposer dishing between the die when the interposer is thinned by a mechanical process (e.g. CMP). Other features are also provided.
Abstract:
Semiconductor integrated circuits (110) or assemblies are disposed at least partially in cavities between two interposers (120). Conductive vias (204M) pass through at least one of the interposers or at least through the interposer's substrate, and reach a semiconductor integrated circuit or an assembly. Other conductive vias (204M.1) pass at least partially through multiple interposers and are connected to conductive vias that reach, or are capacitively coupled to, a semiconductor IC or an assembly. Other features are also provided.
Abstract:
In one embodiment, a method for making a 3D Metal-Insulator-Metal (MIM) capacitor includes providing a substrate having a surface, forming an array of upstanding rods or ridges on the surface, depositing a first layer of an electroconductor on the surface and the array of rods or ridges, coating the first electroconductive layer with a layer of a dielectric, and depositing a second layer of an electroconductor on the dielectric layer. In some embodiments, the array of rods or ridges can be made of a photoresist material, and in others, can comprise bonded wires.
Abstract:
Two microelectronic components (110, 120), e.g. a die and an interposer, are bonded to each other. One of the components' contact pads (110C) include metal, and the other component has silicon (410) which reacts with the metal to form metal silicide (504). Then a hole (510) is made through one of the components to reach the metal silicide and possibly even the unreacted metal (110C) of the other component. The hole is filled with a conductor (130), possibly metal, to provide a conductive via that can be electrically coupled to contact pads (120C.B) attachable to other circuit elements or microelectronic components, e.g. to a printed circuit board.
Abstract:
In a multi-chip module (MCM), a “super” chip (110N) is attached to multiple “plain” chips (110F′ “super” and “plain” chips can be any chips). The super chip is positioned above the wiring board (WB) but below at least some of plain chips (110F). The plain chips overlap the super chip. Further, the plain chips' low speed IOs can be connected to the WB by long direct connections such as bond wires (e.g. BVAs) or solder stacks; such connections can be placed side by side with the super chip. Such connections can be long, so the super chip is not required to be thin. Also, if through-substrate vias (TSVs) are omitted, the manufacturing yield is high and the manufacturing cost is low. Other structures are provided that combine the short and long direct connections to obtain desired physical and electrical properties.
Abstract:
Die (110) and/or undiced wafers and/or multichip modules (MCMs) are attached on top of an interposer (120) or some other structure (e.g. another integrated circuit) and are covered by an encapsulant (160). Then the interposer is thinned from below. Before encapsulation, a layer (410) more rigid than the encapsulant is formed on the interposer around the die to reduce or eliminate interposer dishing between the die when the interposer is thinned by a mechanical process (e.g. CMP). Other features are also provided.
Abstract:
Die (110) are attached to an interposer (420), and the interposer/die assembly is placed into a lid cavity (510). The lid (210) is attached to the top of the assembly, possibly to the encapsulant (474) at the top. The lid's legs (520) surround the cavity and extend down below the top surface of the interposer's substrate (420S), possibly to the level of the bottom surface of the substrate or lower. The legs (520) may or may not be attached to the interposer/die assembly. In fabrication, the interposer wafer (420SW) has trenches (478) which receive the lid's legs during the lid placement. The interposer wafer is later thinned to remove the interposer wafer portion below the legs and to dice the interposer wafer. The thinning process also exposes, on the bottom, conductive vias (450) passing through the interposer substrate. Other features are also provided.
Abstract:
A combined interposer (120) includes multiple constituent interposers (120.i), each with its own substrate (120.iS) and with a circuit layer (e.g. redistribution layer) on top and/or bottom of the substrate. The top circuit layers can be part of a common circuit layer (120R.T) which can interconnect different interposers. Likewise, the bottom circuit layers can be part of a common circuit layer (120R.B). The constituent interposer substrates (120.iS) are initially part of a common wafer, and the common top circuit layer is fabricated before separation of the constituent interposer substrates from the wafer. Use of separated substrates reduces stress compared to use of a single large substrate. Other features are also provided.