摘要:
A stackable wafer level package and a fabricating method thereof are disclosed. In the stackable wafer level package, bond pads (or redistribution layers) are arranged on a bottom semiconductor die, and metal pillars are formed on some of the bond pads positioned around the edges of the bottom semiconductor die. A top semiconductor die is electrically connected to the other bond pads, on which the metal pillars are not formed, positioned around the center of the bottom semiconductor die through conductive bumps. The metal pillars and the top semiconductor die are encapsulated by an encapsulant. A plurality of interconnection patterns electrically connected to the metal pillars are formed on the surface of the encapsulant. Solder balls are attached to the interconnection patterns. Due to this stack structure, the wafer level package is reduced in thickness and footprint. Therefore, the wafer level package is highly suitable for mobile applications.
摘要:
A semiconductor device utilizing redistribution layers to couple stacked die is disclosed and may include a first semiconductor die with a first surface comprising bond pads, a second surface opposite the first surface, and sloped side surfaces between the first and second surfaces, such that a cross-section of the first die is trapezoidal in shape. A second semiconductor die with a first surface may be bonded to the second surface of the first die, wherein the first surface of the second die may comprise bond pads. A passivation layer may be formed on the first surface and sloped side surfaces of the first die and the first surface of the second die. A redistribution layer may be formed on the passivation layer, electrically coupling bond pads on the first and second die. A conductive pillar may extend from a bond pad on the second die to the second redistribution layer.
摘要:
A wafer-level chip-scale package includes a semiconductor die having planar top and bottom surfaces and a plurality of metal pads formed at the top surface in an area array. A first protective layer is formed on the top surface of the semiconductor die, the first protective layer having a plurality of first apertures for allowing the metal pads to be opened upward. A second protective layer is formed on a surface of the first protective layer, the second protective layer having a plurality of second apertures which are larger than and overly corresponding first apertures of the first protective layer so that regions of the metal pads and the first protective layer are exposed to the outside of the semiconductor die. Solder balls are fused to each metal pad, which are opened to the outside through the first apertures of the first protective layer and the second apertures of the second protective layer.
摘要:
A wafer level fan out semiconductor device and a manufacturing method thereof are provided. A first sealing part is formed on lateral surfaces of a semiconductor die. A plurality of redistribution layers are formed on surfaces of the semiconductor die and the first sealing part, and solder balls are attached to the redistribution layers. The solder balls are arrayed on the semiconductor die and the first sealing part. In addition, a second sealing part is formed on the semiconductor die, the first sealing part and lower portions of the solder balls. The solder balls are exposed to the outside through the second sealing part. Since the first sealing part and the second sealing part are formed of materials having thermal expansion coefficients which are the same as or similar to each other, warpage occurring to the wafer level fan out semiconductor device can be suppressed.
摘要:
A wafer-level chip-scale package includes a semiconductor die having planar top and bottom surfaces and a plurality of metal pads formed at the top surface in an area array. A first protective layer is formed on the top surface of the semiconductor die, the first protective layer having a plurality of first apertures for allowing the metal pads to be opened upward. A second protective layer is formed on a surface of the first protective layer, the second protective layer having a plurality of second apertures which are larger than and overly corresponding first apertures of the first protective layer so that regions of the metal pads and the first protective layer are exposed to the outside of the semiconductor die. Solder balls are fused to each metal pad, which are opened to the outside through the first apertures of the first protective layer and the second apertures of the second protective layer.
摘要:
A semiconductor device utilizing redistribution layers to couple stacked die is disclosed and may include a first semiconductor die with a first surface comprising bond pads, a second surface opposite the first surface, and sloped side surfaces between the first and second surfaces, such that a cross-section of the first die is trapezoidal in shape. A second semiconductor die with a first surface may be bonded to the second surface of the first die, wherein the first surface of the second die may comprise bond pads. A passivation layer may be formed on the first surface and sloped side surfaces of the first die and the first surface of the second die. A redistribution layer may be formed on the passivation layer, electrically coupling bond pads on the first and second die. A conductive pillar may extend from a bond pad on the second die to the second redistribution layer.
摘要:
A semiconductor device and a manufacturing method thereof are disclosed. A first insulation layer is formed on a semiconductor die, a redistribution layer electrically connected to a bond pad is formed on the first insulation layer, and a second insulation layer covers the redistribution layer. The second insulation layer is made of a cheap, non-photosensitive material. Accordingly, the manufacturing cost of the semiconductor device can be reduced.
摘要:
Provided are a semiconductor device including an interposer having a relatively thin thickness without a through silicon via and a method of manufacturing the same. The method of manufacturing a semiconductor device includes forming an interposer including a redistribution layer and a dielectric layer on a dummy substrate, connecting a semiconductor die to the redistribution layer facing an upper portion of the interposer, encapsulating the semiconductor die by using an encapsulation, removing the dummy substrate from the interposer, and connecting a bump to the redistribution layer facing a lower portion of the interposer.
摘要:
A semiconductor device with plated conductive pillar coupling is disclosed and may include a semiconductor die comprising a conductive pillar formed on a bond pad on the die, a substrate comprising an insulating layer with conductive patterns formed on a first surface of the substrate and a second surface opposite to the first surface, and a plating layer electrically coupling the conductive pillar and the bond pad on the first surface of the die to the conductive pattern on the first surface of the substrate. The conductive pillar, the conductive patterns, and the plating layer may comprise copper. The plating layer may fill a void between the copper pillar and the conductive pattern on the first surface of the substrate. The substrate may comprise a rigid circuit board, a flexible circuit board, a ceramic substrate, a semiconductor die, or semiconductor wafer.
摘要:
A semiconductor package comprising a plurality of leads. Each of the leads defines opposed first and second surfaces, and a third surface which is also disposed in opposed relation to the second surface. The first surface is oriented between the second and third surfaces. The semiconductor package further comprises first and second semiconductor dies which each define opposed first and second surfaces. Disposed on the first surface of the first semiconductor die are a plurality of bond pads, with bond pads also being disposed on the second surface of the semiconductor die. The first surface of the first semiconductor die is attached to the second surface of each of the leads, with the first surface of the second semiconductor die being attached to the second surface of the first semiconductor die. A plurality of conductive connectors or wires electrically connect the bond pads of the first and second semiconductor dies to respective ones of the leads. An encapsulating portion is applied to and at least partially encapsulates the leads, the first and second semiconductor dies, and the conductive connectors.