摘要:
A device for capturing a tissue sample from within a body comprises a needle slidably comprising a needle lumen extending therethrough to a needle opening in the distal end and a stylet slidably received in the needle lumen for movement between an extended position in which a tissue penetrating distal tip of the stylet extends out of the needle opening to penetrate target tissue and a retracted position in which the distal tip of the stylet is received within the needle opening to substantially seal the needle lumen. The stylet further comprises an anchoring feature located proximally of the tissue penetrating distal tip. The anchoring feature comprises a first gripping member including a first proximal facing abutting surface adjacent to a first tissue receiving gap. Movement of the stylet distally out of the needle lumen brings the first gripping member into engagement with surrounding tissue to anchor the stylet at a desired position within the body.
摘要:
Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
摘要:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
摘要:
Embodiments are directed to methods for forming multi-layer three-dimensional structures involving the joining of at least two structural elements, at least one of which is formed as a multi-layer three-dimensional structure, wherein the joining occurs via one of: (1) elastic deformation and elastic recovery and subsequent retention of elements relative to each other, (2) relative deformation of an initial portion of at least one element relative to another portion of the at least one element until the at least two elements are in a desired retention position after which the deformation is reduced or eliminated and a portion of at least one element is brought into position which in turn locks the at least two elements together via contact with one another including contact with the initial portion of at least one element, or (3) moving a retention region of one element into the retention region of the other element, without deformation of either element, along a path including a loading region of the other element and wherein during normal use the first and second elements are configured relative to one another so that the loading region of the second elements is not accessible to the retention region of the first element.
摘要:
An embodiment of the invention includes a method for acquiring a plurality of tissue samples. The method includes using a device to cut a first tissue sample from an internal tissue tract of a patient and storing the first tissue sample in a container. Without removing the device from the patient, the method further includes using the device to cut a second tissue sample from the internal tissue tract and storing the tissues ample in the container. The method also includes coupling a fluid delivery device to the container to flush the first and second tissue samples from the container.
摘要:
Embodiments of multi-layer three-dimensional structures and formation methods provide structures with effective feature (e.g. opening) sizes (e.g. virtual gaps) that are smaller than a minimum feature size (MFS) that exists on each layer as a result of the formation method used in forming the structures. In some embodiments, multi-layer structures include a first element (e.g. first patterned layer with a gap) and a second element (e.g. second patterned layer with a gap) positioned adjacent the first element to define a third element (e.g. a net gap or opening resulting from the combined gaps of the first and second elements) where the first and second elements have features that are sized at least as large as the minimum feature size and the third element, at least in part, has dimensions or defines dimensions smaller than the minimum feature size.
摘要:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
摘要:
Embodiments of invention are directed to micro-scale of mesoscale tissue approximation instruments that may be delivered to the body of a patient during minimally invasive or other surgical procedures. In one group of embodiments, the instrument has an elongated (longitudinal) configuration while with two sets of expandable wings that each have a toggle configuration that can be made to expand when located on opposite sides of a distal tissue region and a proximal tissue region and can then be made to move toward one another to bring the two tissue regions into more a proximal position. In some embodiments, multiple tissue approximation instruments are located within a delivery system for sequential delivery to a patient's body.
摘要:
Embodiments of invention are directed to the formation of microprobes (i.e. compliant electrical or electronic contact elements) on a temporary substrate, dicing individual probe arrays, and then transferring the arrays to space transformers or other permanent substrates. Some embodiments of the invention transfer probes to permanent substrates prior to separating the probes from a temporary substrate on which the probes were formed while other embodiments do the opposite. Some embodiments, remove sacrificial material prior to transfer while other embodiments remove sacrificial material after transfer. Some embodiments are directed to the bonding of first and second electric components together using one or more solder bumps with enhanced aspect ratios (i.e. height to width ratios) obtained as a result of surrounding the bumps at least in part with rings of a retention material. The retention material may act be a solder mask material.
摘要:
Embodiments are directed to electrochemically fabricating multi-layer three dimensional structures where each layer comprises at least one structural and at least one sacrificial material and wherein at least some metals or alloys are electrodeposited during the formation of some layers and at least some metals are deposited during the formation of some layers that are either difficult to electrodeposit and/or are difficult to electrodeposit onto. In some embodiments, the hard to electrodeposit metals (e.g. Ti, NiTi, W, Ta, Mo, etc.) may be deposited via chemical or physical vacuum deposition techniques while other techniques are used in other embodiments. In some embodiments, prior to electrodepositing metals, the surface of the previously formed layer is made to undergo appropriate preparation for receiving an electrodeposited material. Various surface preparation techniques are possible, including, for example, anodic activation, cathodic activation, and vacuum deposition of a seed layer and possibly an adhesion layer.