摘要:
In a dividing method according to the present invention, a wiring board formed of ceramic is forced up (upper swing) by a lower clamp claw of a clamper, and some of a protruded wiring board portion protruding from a conveying chute is pressed against a support body to perform a first division under bending stress. Thereafter, the upward-located clamper is rotatably swung (lower swing) downward to allow an upper clamp claw to press down the protruded wiring board portion, thereby performing a reverse division at the first division section again as a second division. Since the second division allows a tensile force to act on a remaining and thin non-divided resin portion, the non-divided resin portion is torn off. Thus, the perfect division is enabled. Fractionalizing is done by a one-row division and an individual division so that each semiconductor device is formed.
摘要:
In a dividing method according to the present invention, a wiring board formed of ceramic is forced up (upper swing) by a lower clamp claw of a clamper, and some of a protruded wiring board portion protruding from a conveying chute is pressed against a support body to perform a first division under bending stress. Thereafter, the upward-located clamper is rotatably swung (lower swing) downward to allow an upper clamp claw to press down the protruded wiring board portion, thereby performing a reverse division at the first division section again as a second division. Since the second division allows a tensile force to act on a remaining and thin non-divided resin portion, the non-divided resin portion is torn off. Thus, the perfect division is enabled. Fractionalizing is done by a one-row division and an individual division so that each semiconductor device is formed.
摘要:
In a dividing method according to the present invention, a wiring board formed of ceramic is forced up (upper swing) by a lower clamp claw of a clamper, and some of a protruded wiring board portion protruding from a conveying chute is pressed against a support body to perform a first division under bending stress. Thereafter, the upward-located clamper is rotatably swung (lower swing) downward to allow an upper clamp claw to press down the protruded wiring board portion, thereby performing a reverse division at the first division section again as a second division. Since the second division allows a tensile force to act on a remaining and thin non-divided resin portion, the non-divided resin portion is torn off. Thus, the perfect division is enabled. Fractionalizing is done by a one-row division and an individual division so that each semiconductor device is formed.
摘要:
There is provided a semiconductor device with enhanced reliability having a heat sink mounting a plurality of semiconductor chips, a plurality of inner leads connected electrically to the semiconductor chips, a molding body for resin molding the plurality of semiconductor chips and the plurality of inner leads, a plurality of wires for providing electrical connections between the respective electrodes of the semiconductor chips and the inner leads corresponding thereto, and wide outer leads connecting to the inner leads and exposed outside the molding body. A plurality of slits are formed in the respective portions of the outer leads located outside the molding body to extend lengthwise in directions in which the outer leads are extracted. This achieves a reduction in lead stress which is placed on the outer leads by thermal stress or the like after the mounting of a MOSFET and thereby enhances the reliability of the MOSFET.
摘要:
A semiconductor device comprising semiconductor chips each formed with plural pads at the main surface, chip parts each formed with connection terminals at both ends thereof, a module substrate on which the semiconductor chips and the chip parts are mounted, solder connection portions for connecting the chip parts and the substrate terminals of the module substrate by soldering, gold wires for connecting the pads of the semiconductor chips and corresponding substrate terminals of the module substrate, and a sealing portion formed with a low elasticity resin such as an insulative silicone resin or a low elasticity epoxy resin for covering the semiconductor chips, chip parts, solder connection portions and gold wires which prevents flow out of the solder in the solder connection portion by re-melting thereby preventing short-circuit.
摘要:
A semiconductor device comprising semiconductor chips each formed with plural pads at the main surface, chip parts each formed with connection terminals at both ends thereof, a module substrate on which the semiconductor chips and the chip parts are mounted, solder connection portions for connecting the chip parts and the substrate terminals of the module substrate by soldering, gold wires for connecting the pads of the semiconductor chips and corresponding substrate terminals of the module substrate, and a sealing portion formed with a low elasticity resin such as an insulative silicone resin or a low elasticity epoxy resin for covering the semiconductor chips, chip parts, solder connection portions and gold wires which prevents flow out of the solder in the solder connection portion by re-melting thereby preventing short-circuit.
摘要:
In a semiconductor device, the likely occurrence of cracking of a ceramic substrate, and the consequential disconnection of internal layer wiring, due to thermal changes suffered when the semiconductor device is mounted on external wiring boards having different thermal expansion is prevented. The semiconductor device has a ceramic substrate, a wiring pattern formed on a first principal plane and having mounted semiconductor components, an external electrode portion formed on a second principal plane and connected to an external circuit, internal layer wiring formed inside said ceramic substrate to electrically connect said wiring pattern and said external electrode portion via through-hole wiring, and semiconductor components and a resin layer covering said semiconductor components, wherein the internal layer wiring is formed internally with respect to the side of said ceramic substrate with a clearance of at least 0.05 mm.
摘要:
A semiconductor device comprising semiconductor chips each formed with plural pads at the main surface, chip parts each formed with connection terminals at both ends thereof, a module substrate on which the semiconductor chips and the chip parts are mounted, solder connection portions for connecting the chip parts and the substrate terminals of the module substrate by soldering, gold wires for connecting the pads of the semiconductor chips and corresponding substrate terminals of the module substrate, and a sealing portion formed with a low elasticity resin such as an insulative silicone resin or a low elasticity epoxy resin for covering the semiconductor chips, chip parts, solder connection portions and gold wires which prevents flow out of the solder in the solder connection portion by re-melting thereby preventing short-circuit.
摘要:
The present invention realizes strengthening of a ground of a lower-surface ground electrode of an upper semiconductor chip and miniaturization in a semiconductor module on which two semiconductor chips are mounted in a stacked manner. A lower semiconductor chip is fixed to a bottom of a recess formed in an upper surface of a module board, and an upper semiconductor chip is fixed to an upper surface of a support body made of conductor which is formed over the upper surface of the module board around the recess. External electrode terminals and a heat radiation pad are formed over a lower surface of the module board.
摘要:
A semiconductor device has an external wiring for GND formed over an underside surface of a wiring substrate. A plurality of via holes connecting to the external wiring for GND are formed to penetrate the wiring substrate. A first semiconductor chip of high power consumption, including HBTs, is mounted over a principal surface of the wiring substrate. The emitter bump electrode of the first semiconductor chip is connected in common with emitter electrodes of a plurality of HBTs formed in the first semiconductor chip. The emitter bump electrode is extended in a direction in which the HBTs line up. The first semiconductor chip is mounted over the wiring substrate so that a plurality of the via holes are connected with the emitter bump electrode. A second semiconductor chip lower in heat dissipation value than the first semiconductor chip is mounted over the first semiconductor chip.