摘要:
An integrated circuit structure includes a substrate and a metal pad over the substrate. A post-passivation interconnect (PPI) line is connected to the metal pad, wherein the PPI line includes at least a portion over the metal pad. A PPI pad is connected to the PPI line. A polymer layer is over the PPI line and the PPI pad, wherein the polymer layer has a thickness greater than about 30 μm. An under-bump metallurgy (UBM) extends into an opening in the polymer layer and electrically connected to the PPI pad.
摘要:
A method for selectively forming a dielectric layer. An embodiment includes forming a dielectric layer, such as an oxide layer, on a semiconductor substrate, depositing a silicon layer on the dielectric layer, and treating the silicon layer with nitrogen, thereby converting the silicon layer into a silicon nitride layer. This method allows for a protective silicon nitride layer to be formed, while also preventing and/or reducing the nitrogen itself from penetrating far enough to contaminate the substrate. In another embodiment the treating with nitrogen is continued to form not only a silicon nitride, but to also diffuse a small portion of nitrogen into the dielectric layer to nitridized a portion of the dielectric layer. Optionally, an anneal could be performed to repair any damage that has been done by the treatment process.
摘要:
An apparatus includes an enclosure, at least one process chamber, a robot and at least one valve. The enclosure has a gas therein and at least one door configured to cover an opening into the enclosure. The gas includes at least one reduction gas. The robot is disposed within the enclosure and configured to transfer a substrate between the door and the process chamber. The valve is coupled to the enclosure.
摘要:
A device and method of formation are provided for a high-k gate dielectric and gate electrode. The high-k dielectric material is formed, and a silicon-rich film is formed over the high-k dielectric material. The silicon-rich film is then treated through either oxidation or nitridation to reduce the Fermi-level pinning that results from both the bonding of the high-k material to the subsequent gate conductor and also from a lack of oxygen along the interface of the high-k dielectric material and the gate conductor. A conductive material is then formed over the film through a controlled process to create the gate conductor.
摘要:
A portable electrostatic chuck carrier includes a holder having a dielectric top surface, and bipolar electrodes under the dielectric top surface. The bipolar electrodes includes positive electrodes and negative electrodes electrically insulated from the positive electrodes. The positive electrodes and the negative electrodes are allocated in an alternating pattern in a plane substantially parallel to the dielectric top surface.
摘要:
A structure and method of making an N-FET with a highly doped source/drain and strain booster are presented. The method provides a substrate with a Ge channel region. A gate dielectric is formed over the Ge channel and a gate electrode is formed over the gate dielectric. Sacrificial gate spacers are disposed on the sidewalls of the gate dielectric and gate electrode. Cavities are etched into the substrate extending under the sacrificial gate spacers. Si1-xGex source/drain regions are doped in-situ during formation, x
摘要:
A method of forming a light-emitting diode (LED) device and separating the LED device from a growth substrate is provided. The LED device is formed by forming an LED structure over a growth substrate. The method includes forming and patterning a mask layer on the growth substrate. A first contact layer is formed over the patterned mask layer with an air bridge between the first contact layer and the patterned mask layer. The first contact layer may be a contact layer of the LED structure. After the formation of the LED structure, the growth substrate is detached from the LED structure along the air bridge.
摘要:
A method of forming a semiconductor structure includes providing a substrate; forming a low-k dielectric layer over the substrate; embedding a conductive wiring into the low-k dielectric layer; and thermal soaking the conductive wiring in a carbon-containing silane-based chemical to form a barrier layer on the conductive wiring. A lining barrier layer is formed in the opening for embedding the conductive wiring. The lining barrier layer may comprise same materials as the barrier layer, and the lining barrier layer may be recessed before forming the barrier layer and may contain a metal that can be silicided.
摘要:
An integrated circuit includes a semiconductor substrate, a low-k dielectric layer over the semiconductor substrate, a first opening in the low-k dielectric layer, and a first diffusion barrier layer in the first opening covering the low-k dielectric layer in the first opening, wherein the first diffusion barrier layer has a bottom portion connected to sidewall portions, and wherein the sidewall portions have top surfaces close to a top surface of the low-k dielectric layer. The integrated circuit further includes a conductive line filling the first opening wherein the conductive line has a top surface lower than the top surfaces of the sidewall portions of the diffusion barrier layer, and a metal cap on the conductive line and only within a region directly over the conductive line.
摘要:
A semiconductor structure includes a first die comprising a first substrate and a first bonding pad over the first substrate, a second die having a first surface and a second surface opposite the first surface, wherein the second die is stacked on the first die and a protection layer having a vertical portion on a sidewall of the second die, and a horizontal portion extending over the first die.