Abstract:
An apparatus for simultaneously removing heat from two surfaces of a semiconductor structure includes a heat sink mounted to a front surface and a heat sink mounted to a back surface of the semiconductor structure. The structure can be two chips mounted in face-to-face arrangement, and the heat sinks remove heat from back surfaces of both chips.
Abstract:
A method includes receiving at least one wafer having a front side and a backside, where the front side has a plurality of integrated circuit chips thereon. The backside of the wafer is thinned, a pattern of material is removed from the backside of the wafer to form a plurality of dicing trenches. Each of the dicing trenches are positioned opposite a location on the front side of the wafer that corresponds to edges of each of the plurality of chips. The dicing trenches are filled with a filler material and a dicing support is attached to a front side of the wafer. The filler material is removed from the dicing trenches, and a force is applied to the dicing support to separate each of the plurality of chips on the wafer from each other along the dicing trenches.
Abstract:
A back of a dielectric transparent handle substrate is coated with a blanket conductive film or a mesh of conductive wires. A semiconductor substrate is attached to the transparent handle substrate employing an adhesive layer. The semiconductor substrate is thinned in the bonded structure to form a stack of the transparent handle substrate and the semiconductor interposer. The thinned bonded structure may be loaded into a processing chamber and electrostatically chucked employing the blanket conductive film or the mesh of conductive wires. The semiconductor interposer may be bonded to a semiconductor chip or a packaging substrate employing C4 bonding or intermetallic alloy bonding. Illumination of ultraviolet radiation to the adhesive layer is enabled, for example, by removal of the blanket conductive film or through the mesh so that the transparent handle substrate may be detached. The semiconductor interposer may then be bonded to a packaging substrate or a semiconductor chip.
Abstract:
A voltage regulator module (VRM) includes a first interface configured to couple to a first substrate interface at a first voltage. The VRM also includes a second interface configured to couple to a first processor interface at a second voltage. A first regulator module couples to the first interface and to the second interface. The first regulator module is configured to receive power at the first interface, to convert power to the second voltage, and to deliver power to the first processor interface at the second voltage. A method for providing power to a processor includes receiving power from a first substrate interface at a first voltage. The received power is regulated to generate power at a second voltage. The regulated power is provided to a processor at a first processor interface coupled to the processor. The processor interface delivers power to a logic group of a plurality of logic groups of the processor.
Abstract:
A sealed microelectronic structure which provides mechanical stress endurance and includes at least two chips being electrically connected to a semiconductor structure at a plurality of locations. Each chip includes a continuous bonding material along it's perimeter and at least one support column connected to each of the chips positioned within the perimeter of each chip. Each support column extends outwardly such that when the at least two chips are positioned over one another the support columns are in mating relation to each other. A seal between the at least two chips results from the overlapping relation of the chip to one another such that the bonding material and support columns are in mating relation to each other. Thus, the seal is formed when the at least two chips are mated together, and results in a bonded chip structure.
Abstract:
Techniques for electronic device fabrication are provided. In one aspect, an electronic device is provided. The electronic device comprises at least one interposer structure having one or mole vias and a plurality of decoupling capacitors integrated therein, the at least one interposer structure being configured to allow for one or more of the plurality of decoupling capacitors to be selectively deactivated. In another aspect, a method of fabricating an electronic device comprising at least one interposer structure having one or more vias and a plurality of decoupling capacitors integrated therein comprises the following step. One or more of the plurality of decoupling capacitors are selectively deactivated.
Abstract:
An IC chip and design structure having a TWV contact contacting the TWV and extending through a second dielectric layer over the TWV. An IC chip may include a substrate; a through wafer via (TWV) extending through at least one first dielectric layer and into the substrate; a TWV contact contacting the TWV and extending through a second dielectric layer over the TWV; and a first metal wiring layer over the second dielectric layer, the first metal wiring layer contacting the TWV contact.
Abstract:
A silicon-on-insulator (SOI) structure is provided for forming through vias in a silicon wafer carrier structure without backside lithography. The SOI structure includes the silicon wafer carrier structure bonded to a silicon substrate structure with a layer of buried oxide and a layer of nitride separating these silicon structures. Vias are formed in the silicon carrier structure and through the oxide layer to the nitride layer and the walls of the via are passivated. The vias are filled with a filler material of either polysilicon or a conductive material. The substrate structure is then etched back to the nitride layer and the nitride layer is etched back to the filler material. Where the filler material is polysilicon, the polysilicon is etched away forming an open via to the top surface of the carrier wafer structure. The via is then backfilled with conductive material.
Abstract:
A sealed microelectronic structure which provides mechanical stress endurance and includes at least two chips being electrically connected to a semiconductor structure at a plurality of locations. Each chip includes a continuous bonding material along it's perimeter and at least one support column connected to each of the chips positioned within the perimeter of each chip. Each support column extends outwardly such that when the at least two chips are positioned over one another the support columns are in mating relation to each other. A seal between the at least two chips results from the overlapping relation of the chip to one another such that the bonding material and support columns are in mating relation to each other. Thus, the seal is formed when the at least two chips are mated together, and results in a bonded chip structure.
Abstract:
An imaging system for use in a digital camera or cell phone utilizes one chip for logic and one chip for image processing. The chips are interconnected using around-the-edge or through via conductors extending from bond pads on the active surface of the imaging chip to backside metallurgy on the imaging chip. The backside metallurgy of the imaging chip is connected to metallurgy on the active surface of the logic chip using an array of solder bumps in BGA fashion. The interconnection arrangement provides a CSP which matches the space constraints of a cell phone, for example. The arrangement also utilizes minimal wire lengths for reduced noise. Connection of the CSP to a carrier package may be either by conductive through vias or wire bonding. The CSP is such that the imaging chip may readily be mounted across an aperture in the wall of a cell phone, for example, so as to expose the light sensitive pixels on the active surface of said imaging chip to light.