Abstract:
A highly reliable, high-productivity package equipped with a semiconductor chip, and a method for producing the same. In a package (100) comprising a semiconductor chip (10) and a mounting substrate (30), a plurality of electrode terminals (12) are formed on the surface (10a) of the semiconductor chip (10) opposing the mounting substrate side, connection terminals (32) respectively corresponding to the plurality of electrode terminals (12), are formed on the mounting substrate (30), the connection terminals (32) on the mounting substrate (30) and the electrode terminals (12) are electrically connected collectively by solder bumps (17) formed in self-assembly, an electrode pattern (20) not connected with the electrode terminals (12) and the connection terminals (32) is formed on the chip surface (10a) or the surface (35) of the mounting substrate (30) corresponding to the chip surface (10a), and solder (19) is accumulated on the electrode pattern (20).
Abstract:
A semiconductor device has a wiring substrate, a semiconductor chip, a conductive bump, and an under-fill resin. The wiring substrate has a solder resist layer, and a stress alleviating portion. The stress alleviating portion is mounted on the solder resist layer opposed to the outer circumference of the semiconductor chip. The material of the stress alleviating portion is different from that of the solder resist layer. The stress alleviating portion alleviates the stress acting on the solder resist layer and the under-fill resin. The semiconductor chip is mounted above the wiring substrate via the conductive bump. The gap between the wiring substrate and the semiconductor chip is filled with the under-fill resin.
Abstract:
A method of manufacturing an electronic device includes the steps of: forming a conductive pattern on a film made of a resin material and thereby forming a base body on which a circuit chip is mounted; forming a reinforcing layer that suppresses expansion and contraction of the film in either one of a mounting area on the film which area the circuit chip is mounted on and a rear area at the back of the mounting area; applying a thermosetting adhesive; mounting the circuit chip; pinching the base body mounted with the circuit chip by a heating device that heats the thermosetting adhesive and has a pressing section and a supporting section; and fixing the circuit chip to the conductive pattern by hardening the thermosetting adhesive through heating by the heating device.
Abstract:
A flip chip mounting process or a bump-forming process according to the present invention is characterized in that electrically-conductive particles are fixed on electrodes formed on an electronic component. A composition comprising solder powder, a convection additive and a resin component is supplied onto a surface of the electronic component, the surface is provided with the electrodes. The supplied composition is heated up to a temperature enabling the solder powder to melt. As a result, the convection additive boils or is decomposed so as to generate a gas. The generated gas produces a convection phenomenon within the supplied composition. Since the convection phenomenon promotes the movement of the solder powder, the solder powder can move freely within the composition. The electrically-conductive particles serve as nuclei for the solder powder to self-assemble and grow. As a result, the molten solder powder is allowed to self-assemble and grow in the vicinity of the electrically-conductive particles, which leads to a formation of connections or bumps.
Abstract:
An electronic package is provided. The electronic package includes a first substrate, an electronic component, a first sealant, a second substrate, a plurality of bonding wires and a second sealant, wherein the first substrate has opposing upper and lower surfaces and a plurality of bonding pads is disposed on the upper surface of the first substrate. The electronic component is positioned on the upper surface of the first substrate and electrically connected to the bonding pads. The first sealant is formed on the upper surface of the first substrate to encapsulate the electronic component. The lower surface of the second substrate is attached to the first sealant. The upper surface of the second substrate includes a central protrusion and a rim portion which surrounds and is lower than the central protrusion. A plurality of bonding wires is used to electrically connect the rim portion to the first substrate. The second sealant is formed on the upper surface of the first substrate and on the rim portion of the second substrate to encapsulate the bonding wires, the first sealant and the rim portion.
Abstract:
A printed circuit board assembly and method of assembly in which underfill is placed between a chip and substrate to support the chip. A trench is formed in the upper layer of the printed circuit board to limit the flow of the underfill and in particular to limit the underfill from contact with adjacent components so that the underfill does not interfere with adjacent components on the printed circuit board assembly.
Abstract:
A first cavity in a holder is provided with a plurality of spiral contactors and a thermosetting adhesive member. In a state where a first bare chip is mounted in the first cavity and spherical contactors on the first bare chip are pressed against the plurality of spiral contactors, various tests are performed. If the result of the test is pass, the holder is heated so that the adhesive member becomes hard and rigid by being heated. This can perform securing while a good connection between the first bare chip and the holder is maintained. If the result of the test is fail, only the first bare chip is removed and replaced with a new bare chip.
Abstract:
The assembly comprises an electronic device (20) that is attached to a first side (11) of a carrier substrate (10) with solder connections (18). The first side (11) of the substrate (10) is provided with bond pads (15) and a solder resist layer (16). The space between the substrate (10) and the electronic device (20) is filled with an encapsulant (19) The substrate (10) further comprises contact pads for connection to an external board. The solder resist layer (16) is patterned according to a pattern that includes an aperture (161) adjacent to a first bond pad (15). This aperture (161) is ring-shaped and forms the circumference of the first bond pad. Herewith, delamination is prevented, also if a via (142) is present in the substrate (10) below the bond pad (15).
Abstract:
An electronic system (1) having an interconnect structure (30, 45). In one embodiment a system (1) includes a first electronic device (2) with a first plurality of contact pads (15) each having a noble metal (18) formed along a first surface (19), and a second electronic device (3) with a second plurality of contact pads (29) each having a noble metal (18) formed along a first surface (19). The noble metal (18) of one of the contact pads (15) of the first device (2) is bonded to the noble metal (18) of one of the contact pads (29) of the second device (3). In one embodiment of an associated method of forming an interconnect structure (45), a first electronic device (2) is provided with a first plurality of contact pads (15) each having a noble metal (18) along a first surface (19), and a second electronic device (3) is provided with a plurality of contact pads (29) each having a noble metal (18) along a first surface (19). One or more of the contact pads (15) on the first device (2) is aligned with one or more of the contact pads (29) on the second device (3) to form pairs of pads (45) for electrical contact with one another. The first surface (19) of a contact pad (15) of the first device (2) is pressed against the first surface (19) of a contact pad (29) on the second device (3) to make contact between the two first surfaces (19).
Abstract:
A component arrangement comprising a carrier, a component in a housing with electrical contacts and a moulding compound that encloses the carrier, the semiconductor component in the housing and the electrical contacts, wherein the component is applied on the carrier, and wherein the carrier is provided with holes, and a method for producing a component arrangement, wherein the carrier is provided with holes, the component is positioned on the carrier, the component is connected to the carrier, the component with the carrier is positioned in the leadframe, and this arrangement is enclosed by a moulding compound.