Abstract:
A semiconductor device, includes: a semiconductor substrate; a multilayered interconnect structure formed on the semiconductor substrate; a terminal for flip-chip packaging arranged on the surface of the multilayered interconnect structure; and a spiral inductor formed to enclose the terminal for flip-chip packaging, in a plan view, which is not electrically connected with the spiral inductor. The spiral inductor may be provided for peaking by which the gain reduction caused in a high frequency is compensated.
Abstract:
A method of improving electrical isolation between a first circuit and a second circuit sharing a common substrate having an effective dielectric constant greater than that of air. The first and second circuits are spaced apart and separated from one another by an intermediate portion of the substrate. The method includes removing a portion of the intermediate portion to replace the portion removed with air thereby reducing the effective dielectric constant of the intermediate portion. By reducing the effective dielectric constant of the intermediate portion, electrical isolation between the first and second circuits is improved thereby reducing crosstalk between the first and second circuits. In particular implementations, the method may be used to reduce alien crosstalk between adjacent communication outlets in a patch panel.
Abstract:
An electrically optimized and structurally protected micro via structure for high speed signals in multilayer interconnection substrates is provided. The via structure eliminates the overlap of a contact with the reference planes to thereby reduce the via capacitance and thus, the via impedance mismatch in the via structure. As a result, the via structure is electrically optimized. The via structure further comprises one or more floating support members placed in close proximity to the via within a via clearance area between the via and the reference planes. The floating support members are “floating” in the sense that they are not in electrical contact with either the via or the reference planes. Thus, they are not provided for purposes of signal propagation but only for structural support. The floating support members may be connected to one another by way of one or more microvia structures.
Abstract:
A method (and structure) of making an electronic interconnection, includes, for a signal line to be interconnected, using a plurality of bonding wires configured to provide a controlled impedance effect.
Abstract:
A circuit board including: a substrate having a mounting area for mounting a vertical multilayer chip capacitor having first and second external electrodes of a first polarity and a third external electrode of a second polarity; first to third pads arranged on the mounting area, the first and second pads having the first polarity and disposed separately from each other on the mounting area, the third pad having the second polarity and disposed between the first and second pads to be connected to the third external electrode; at least one first via formed in the substrate and connected to the first pad; at least one second via formed in the substrate and connected to the second pad; and a plurality of third vias formed in the substrate and connected to the third pad. The first via is disposed adjacent to the third pad relative to a central line of the first pad, the second via is disposed adjacent to the third pad relative to a central line of the second pad, one or more of the third vias are disposed adjacent to the first via relative to a central line of the third pad, and the rest of the third vias are disposed adjacent to the second via relative to the central line of the third pad.
Abstract:
Shielded circuit pad is provided where the parasitic capacitance is tuned out by the inclusion of a shunt transmission line stub which reduces the substrate induced loss in millimeter-wave applications. The circuit pad is located on the substrate, with a shield located beneath the circuit pad, and the shunt transmission line stub attached to the circuit pad. Accordingly, controlled impedance is obtained for millimeter-wave applications. The spacing between the circuit pad and the shield may then be minimized.
Abstract:
In some embodiments, a voltage grading and shielding method for a high voltage component, is provided. In some embodiments, the method includes configuring at least one first track constructed of a metal or an alloy, at a first location predetermined from the mounting position of the high voltage component, and at least one second track constructed of a metal or an alloy thereof, at a second location predetermined along the length of the high voltage component. In some embodiments, the configured at least one first track substantially reduces the stray capacitance effect and the at least one second track produces a substantially linear voltage distribution along the length of the high voltage component.
Abstract:
A semiconductor package that has a superior high frequency characteristics and that can obtain a large area for an internal wiring pattern is provided. According to the present invention, a semiconductor package includes: a multilayer printed wiring board 12, and an IC chip, mounted on the obverse face of the multilayer wiring board 12, and multiple bump terminals 16, mounted on the reverse face. Each bump terminal 16 includes an insulating core 42 having a flat face 40 and a conductive coating deposited on all external surfaces except that of the flat face 40. The end faces of the conductive coatings 44 appear like rings around the insulating cores 42, and are soldered to annular connection pads 52 formed on the reverse face of the multilayer printed wiring board 12. Vias 36 are arranged immediately above the bump terminals 16, and clearance holes 34, the diameter of which is smaller than the diameter of the bump terminals 16, are formed in internal wiring patterns 28 and 30 to permit the passage of the vias 36.
Abstract:
In one embodiment, a substrate assembly includes a flat substrate having oppositely disposed planar surfaces and a conductor. The conductor is formed on at least one of the planar surfaces and defines a conductor plane. The structure further includes an oversized-in-diameter anti-pad formed through the substrate layer and the conductor layer. The anti-pad further includes a dielectric spacer formed substantially coplanar with the conductor plane.
Abstract:
A design rule for a printed wiring board is provided. A conductive layer and a pad are separate from each other in a distance defined by the design rule, which sufficiently prevents the capacitance coupling between the conductive layer and the pad.