Abstract:
A method of patterning a gate stack on a substrate is described. The method includes preparing a gate stack on a substrate, wherein the gate stack includes a high-k layer and a gate layer formed on the high-k layer. The method further includes transferring a pattern formed in the gate layer to the high-k layer using a pulsed bias plasma etching process, and selecting a process condition for the pulsed bias plasma etching process to achieve a silicon recess formed in the substrate having a depth less than 2 nanometer (nm).
Abstract:
Systems and methods are disclosed for plasma enabled film deposition on a wafer in which a plasma is generated using radiofrequency signals of multiple frequencies and in which a phase angle relationship is controlled between the radiofrequency signals of multiple frequencies. In the system, a pedestal is provided to support the wafer. A plasma generation region is formed above the pedestal. An electrode is disposed in proximity to the plasma generation region to provide for transmission of radiofrequency signals into the plasma generation region. A radiofrequency power supply provides multiple radiofrequency signals of different frequencies to the electrode. A lowest of the different frequencies is a base frequency, and each of the different frequencies that is greater than the base frequency is an even harmonic of the base frequency. The radiofrequency power supply provides for variable control of the phase angle relationship between each of the multiple radiofrequency signals.
Abstract:
A method for processing substrate in a processing chamber, which has at least one plasma generating source and a gas source for providing process gas into the chamber, is provided. The method includes exciting the plasma generating source with an RF signal having RF frequency. The method further includes pulsing the gas source, using at least a first gas pulsing frequency, such that a first process gas is flowed into the chamber during a first portion of a gas pulsing period and a second process gas is flowed into the chamber during a second portion of the gas pulsing period, which is associated with the first gas pulsing frequency. The second process gas has a lower reactant-gas-to-inert-gas ratio relative to a reactant-gas-to-inert-gas ratio of the first process gas. The second process gas is formed by removing at least a portion of a reactant gas flow from the first process gas.
Abstract:
The embodiments herein focus on plasma enhanced atomic layer deposition (PEALD) processes. Conventional PEALD techniques result in films having high quality at the bottom and top of a feature, but low quality on the sidewalls. The disclosed embodiments achieve more uniform film quality as evidenced by more uniform wet etch rates and electrical properties throughout the film. The disclosed embodiments may use one or more of a relatively high deposition temperature, a relatively high RF power for generating the plasma, and/or relatively long RF plasma exposure duration during each cycle of the PEALD reaction.
Abstract:
Disclosed is a method for etching an insulation film of a processing target object. The method includes: in a first term, periodically switching ON and OFF of a high frequency power so as to excite a processing gas containing fluorocarbon and supplied into a processing container of a plasma processing apparatus; and in a second term subsequent to the first term, setting the high frequency power to be continuously turned ON so as to excite the processing gas supplied into the processing container. In one cycle consisting of a term where the high frequency is turned ON and a term where the high frequency power is turned OFF in the first term, the second term is longer than the term where the high frequency power is turned ON.
Abstract:
A plasma processing system for generating plasma to process at least a wafer. The plasma processing system may include a first coil for conducting a first current for sustaining at least a first portion of the plasma. The plasma processing system may also include a second coil for conducting a second current for sustaining at least a second portion of the plasma. The plasma processing system may also include a power source for powering the first current and the second current. The plasma processing system may also include a parallel circuit for adjusting one of the amperage of the first current and the amperage of the second current. The parallel circuit may be electrically coupled between the power source and at least one of the first coil and the second coil. The parallel circuit may include an inductor and a variable capacitor electrically connected in parallel to each other.
Abstract:
Techniques herein include methods for etching an oxide layer with greater selectivity to underlying channel materials. Such an increase in etch selectivity reduces damage to channel materials thereby providing more reliable and better performing semiconductor devices. Techniques herein include using fluorocarbon gas to feed a plasma to create etchants, and also creating a flux of ballistic electrons to treat a given substrate during an etch process.
Abstract:
A method of patterning a gate stack on a substrate is described. The method includes preparing a gate stack on a substrate, wherein the gate stack includes a high-k layer and a gate layer formed on the high-k layer. The method further includes transferring a pattern formed in the gate layer to the high-k layer using a pulsed bias plasma etching process, and selecting a process condition for the pulsed bias plasma etching process to achieve a silicon recess formed in the substrate having a depth less than 2 nanometer (nm).
Abstract:
Systems and methods for operating a substrate processing system include processing a substrate arranged on a substrate support in a processing chamber. At least one of precursor gas and/or reactive gas is supplied during the processing. The substrate is removed from the processing chamber. Carrier gas and purge gas are selectively supplied to the processing chamber. RF plasma is generated in the processing chamber during N cycles, where N is an integer greater than one. The RF plasma is on for a first period and off for a second period during each of the N cycles. The purge gas is supplied during at least part of each of the N cycles.
Abstract:
A method and apparatus are provided for processing a substrate with a radiofrequency inductive plasma in the manufacture of a device. The inductive plasma is maintained with an inductive plasma applicator having one or more inductive coupling elements. There are thin windows between the inductive coupling elements and the interior of the processing chamber. Various embodiments have magnetic flux concentrators in the inductive coupling element and feed gas holes interspersed among the inductive coupling elements. The thin windows, magnetic flux concentrators, and interspersed feed gas holes are useful to effectuate uniform processing, high power transfer efficiency, and a high degree of coupling between the applicator and plasma. In some embodiments, capacitive current is suppressed using balanced voltage to power an inductive coupling element.