Abstract:
A printed circuit board and a display device are provided. The printed circuit board includes a plurality of insulation layers; at least one metal layer between the plurality of insulation layers; and a fixing member fixed to a surface of one of the at least one metal layer and passing through an outermost one of insulation layers to protrude to the outside.
Abstract:
A method of manufacturing a semiconductor device uses a mounting jig having an insulated circuit board positioning jig, a tubular contact element positioning jig having a plurality of positioning holes formed at predetermined positions to insert a tubular contact element, and a tubular contact element press-down jig. By the insulated circuit board positioning jig and tubular contact element positioning jig, an insulated circuit board and the tubular contact elements are positioned, and the tubular contact elements are soldered to the insulated circuit board while being pressed down by the tubular contact element press-down jig.
Abstract:
A printed circuit board, including: a substrate on which a component is mounted by solder; and a contact plate having a soldered portion soldered on the substrate, the contact plate being configured to be brought into contact with a contact of an apparatus to which the substrate is to be attached, wherein the soldered portion is soldered on a surface of the substrate opposite to a surface of the substrate on which the component is mounted, and wherein the contact plate has a suppressing portion configured to suppress an adhesion of a flux of the solder to a portion in which the contact plate is to be contacted by the contact, the suppressing portion making a flow path of the flux from the soldered portion to the portion longer than a straight-line distance from the soldered portion to the portion.
Abstract:
According to one embodiment, an electronic apparatus includes, a substrate provided with a plurality of depressions, a stud which has a plurality of projections located in the depressions and which is fixed to the substrate, and a solder connection portion intervening between the substrate and the stud.
Abstract:
First electrode pads formed on one semiconductor package surface include a first reinforcing electrode pad having a surface area larger than that of other first electrode pads. Second electrode pads formed on a printed wiring board on which the semiconductor package is mounted include at least one second reinforcing electrode pad. The second reinforcing electrode pad opposes the first reinforcing electrode pad, and has a surface area greater than that of the other second electrode pads. The first and second electrode pads are connected by solder connection parts. A cylindrical enclosing member encloses an outer perimeter of a solder connection part connecting the first and second reinforcing electrode pads. Increases in the amount of warping of semiconductor devices such as the package substrate and the printed wiring board are suppressed, and the development of solder bridges with respect to adjacent solder connecting parts or adjacent components is reduced.
Abstract:
Multiple small conductive and flexible hollow rings, each of which is made from a pliable material, provide a flexible connection medium for use between a substrate and a microelectronic device package. Each ring is soldered to both the substrate and the device. A portion of the sidewall of each ring is not soldered thus insuring that at least part of the ring stays flexible. The rings accommodate elevation differences on a substrate and electronic device package. They also provide a vibration resistant and flexible joint.
Abstract:
A solder structure comprising a radially-curved exterior surface enclosing a predetermined-sized cavity used for flexibly joining together at predetermined conductive contact points two planar elements having dissimilar properties. By assembling the two planar elements in a tiered arrangement, one planar element having an annular conductive pad and the other planar element having either a corresponding annular or circular conductive pad, separated by a spherical solder compound comprised of solder and a fluxing agent, a hollow solder structure can be created during a melting and subsequent cooling of the solder compound. The plasticity/resiliency characteristics of the resulting hollow solder structure absorbs lateral movement of the two planar elements relative to each other without degradation of the solder joint.
Abstract:
A stress relaxation type electronic component which is to be mounted on a circuit board, wherein a stress relaxation mechanism member is disposed on a surface of said electronic component, said surface being on a side of a connection portion where said electronic component is to be connected to said circuit board, and said stress relaxation mechanism member is electrically conductive.
Abstract:
An inter-substrate conductive mount for a surface mountable circuit board, a method of manufacturing the circuit board and a surface mountable power magnetic device. In one embodiment, the circuit board includes: (1) a substrate, (2) an inter-substrate conductive mount composed of a material having a melting point above a solder reflow temperature and including a compliant solder joint at an interface of the substrate and (3) a solder located proximate the conductive mount, the conductive mount of a sufficiently low weight such that a surface tension of a liquid state of the solder is sufficient to maintain the conductive mount in contact with the substrate as the solder is brought to the reflow temperature, the conductive mount being capable of mounting the substrate to an adjacent substrate and providing a conductive path therebetween.
Abstract:
Flexible connectors having substantially vertical conductive legs allowing the connectors to accommodate deflection in the lateral directions (x-y directions in the plane of the connectors) induced by CTE mismatches between a chip and a substrate during thermal cycling of the chip. The connectors also accommodate deflections in the vertical direction (z direction--perpendicular to the plane of the connectors) which may be caused by connection to a substrate. Such substantially vertical leg features are formed using projection lithography, such as projected x-ray or ultra-violet ("UV") radiation, to selectively expose a photoresist layer such that the substantially vertical metal features may be formed by plating or etching. The sacrificial layer may be in the form of an array of posts, such that "stool-like" post connectors are created, or may be in the form of an array of apertures, such that "basket-like" receptacles or sockets are created. Such a flexible connector may be used in different applications resulting in superior device characteristics, such as: 1) a replacement for flip chip (C4) solder connections or for BGA solder connections; 2) a flexible socket element; or 3) a flexible thermal coupling element.