Abstract:
An apparatus includes a main substrate, a device, and a heat spreader. The main substrate is configured for mounting the device in a mounting location thereon and having a cavity located below the mounting location. The device is mounted in the mounting location, and the heat spreader is fitted into the cavity and coupled to the device and to a heat sink. The heat spreader is configured to conduct heat from the device to the heat sink and to provide electrical insulation between the device and the heat sink.
Abstract:
The present disclosure is related to printed circuit board packages and methods of assembly that may be used in the fabrication of electrical devices. Printed circuit board packages may be manufactured by stacking printed circuit board assemblies. Each printed circuit board assembly may have multiple printed circuit boards supported by a resin mold. The printed circuit board assemblies may be shaped to improve space utilization efficiency and to accommodate large electrical components that are attached to the printed circuit board package.
Abstract:
Readily modifiable and customizable, low-area overhead interconnect structures for forming connections between a system-in-a-package module and other components in an electronic device. One example may provide an interposer for providing an interconnection between a system-in-a-package module and other components in an electronic device. Another may provide a plurality of conductive pins or contacts to form interconnect paths between a module and other components.
Abstract:
An apparatus includes a main substrate, a device, and a heat spreader. The main substrate is configured for mounting the device in a mounting location thereon and having a cavity located below the mounting location. The device is mounted in the mounting location, and the heat spreader is fitted into the cavity and coupled to the device and to a heat sink. The heat spreader is configured to conduct heat from the device to the heat sink and to provide electrical insulation between the device and the heat sink.
Abstract:
An electronic device may be provided with electronic device structures such as housing structures, antenna structures, printed circuits, and structures associated with electrical components. The structures may be attached to each other using adhesive. A liquid pressure sensitive adhesive precursor material is deposited onto one or more surfaces of structures to be bonded. Light or heat can be applied to cure the liquid adhesive material and form pressure sensitive adhesive layers. During curing, chemical bonds are formed between the adhesive material and the structures. Assembly equipment may press the structures together to form pressure sensitive adhesive bonds that can be reworked without disturbing the chemically bonded portions of the adhesive material. The pressure sensitive adhesive may include conductive particles for forming conductive paths.
Abstract:
Readily modifiable and customizable, low-area overhead interconnect structures for forming connections between a system-in-a-package module and other components in an electronic device. One example may provide an interposer for providing an interconnection between a system-in-a-package module and other components in an electronic device. Another may provide a plurality of conductive pins or contacts to form interconnect paths between a module and other components.
Abstract:
Apparatus and methods are described for coupling a circuit component having piezoelectric properties, such as a ceramic capacitor, to a printed circuit board (PCB) by forming a first solder heel fillet and a second solder heel fillet that fixedly couple the circuit component to the PCB, where the first and second solder heel fillets have a height z that is less than a height h of the circuit component to reduce acoustic noise at the PCB caused by coupling the circuit component to the PCB. In various configurations, the first solder heel fillet and the second solder heel fillet can each fixedly coupled to: a bottom surface of the circuit component, a top surface of the PCB at a first solder pad and a second solder pad thereof, and a lower portion of each of a multiple side surfaces of the circuit component.
Abstract:
Methods and apparatuses are disclosed for fabricating a printed circuit board (PCB) having electromagnetic interference (EMI) shielding and also having reduced volume over conventional frame-and-shield approaches. Some embodiments include fabricating the PCB by mounting an integrated circuit to the PCB, outlining an area corresponding to the integrated circuit with a number of grounded vias, selectively applying an insulating layer over the PCB such that at least one of the grounded vias are exposed, and selectively applying a conductive layer over the PCB such that the conductive layer covers at least a portion of the integrated circuit and such that the conductive layer is coupled to the at least one of the grounded vias that are exposed.
Abstract:
Connector inserts and other structures that have a high signal integrity and low insertion loss, are reliable, and are readily manufactured. One example may provide a connector insert formed primarily using a printed circuit board. Contacts on the connector insert may be akin to contacts on a printed circuit board and they may connect to traces having matched impedances on the printed circuit board in order to improve signal integrity and reduce insertion loss. The printed circuit board may be manufactured in a manner for increased reliability. Plating, solder block, and other manufacturing steps that are native to printed circuit board manufacturing may be employed to improve manufacturability. Specialized tools that may provide a chamfered edge on the connector inserts may be employed.
Abstract:
Electrical components such as integrated circuits may be mounted on a printed circuit board. To prevent the electrical components from being subjected to electromagnetic interference, radio-frequency shielding structures may be formed over the components. The radio-frequency shielding structures may be formed from a layer of metallic paint. Components may be covered by a layer of dielectric. Channels may be formed in the dielectric between blocks of circuitry. The metallic paint may be used to coat the surfaces of the dielectric and to fill the channels. Openings may be formed in the surface of the metallic paint to separate radio-frequency shields from each other. Conductive traces on the surface of the printed circuit board may be used in connecting the metallic paint layer to internal printed circuit board traces.