Abstract:
A method includes vacuum annealing on a substrate having at least one solder bump to reduce voids at an interface of the at least one solder bump. A die is mounted over the substrate.
Abstract:
A method includes forming a passivation layer over a metal pad, which is overlying a semiconductor substrate. A first opening is formed in the passivation layer, with a portion of the metal pad exposed through the first opening. A seed layer is formed over the passivation layer and to electrically coupled to the metal pad. The seed layer further includes a portion over the passivation layer. A first mask is formed over the seed layer, wherein the first mask has a second opening directly over at least a portion of the metal pad. A PPI is formed over the seed layer and in the second opening. A second mask is formed over the first mask, with a third opening formed in the second mask. A portion of a metal bump is formed in the third opening. After the step of forming the portion of the metal bump, the first and the second masks are removed.
Abstract:
The disclosure relates to fabrication of to a metal pillar. An exemplary method of fabricating a semiconductor device comprises the steps of providing a substrate having a contact pad; forming a passivation layer extending over the substrate having an opening over the contact pad; forming a metal pillar over the contact pad and a portion of the passivation layer; forming a solder layer over the metal pillar; and causing sidewalls of the metal pillar to react with an organic compound to form a self-assembled monolayer or self-assembled multi-layers of the organic compound on the sidewalls of the metal pillar.
Abstract:
An intelligent storage system and an intelligent storage method thereof are disclosed. The system includes a cabinet and loading tables, each loading table includes an accommodating groove having a shape corresponding the shape of the object to be stored, and a sensing device in the accommodating groove. A central control device includes a processor electrically connected to the sensing device, the output device and an input device, and a system database for the processor to access or store information. The sensing devices senses whether there is a corresponding stored object in each accommodating groove to form a status signal carrying an identification code, and outputs it to the processor, then the processor accesses the corresponding information in the system database according to the identification code of the status signal, so as to realize the management and status display of the stored object, and effectively improve work safety and effectiveness.
Abstract:
A device includes a package component having conductive features on a top surface, and a polymer region molded over the top surface of the first package component. A plurality of openings extends from a top surface of the polymer region into the polymer region, wherein each of the conductive features is exposed through one of the plurality of openings. The plurality of openings includes a first opening having a first horizontal size, and a second opening having a second horizontal size different from the first horizontal size.
Abstract:
A method for bonding an LED wafer, a method for manufacturing an LED chip, and a bonding structure are provided. The method for bonding an LED wafer includes the following steps. A first metal film is formed on an LED wafer. A second metal film is formed on a substrate. A bonding material layer whose melting point is lower than or equal to about 110° C. is formed on the surface of the first metal film. The LED wafer is placed on the substrate. The bonding material layer is heated at a pre-solid reaction temperature for a pre-solid time to perform a pre-solid reaction. The bonding material layer is heated at a diffusion reaction temperature for a diffusing time to perform a diffusion reaction, wherein the melting points of the first and the second inter-metallic layers after diffusion reaction are higher than about 110° C.
Abstract:
Methods and apparatus for a forming molded underfills. A method is disclosed including loading a flip chip substrate into a selected one of the upper mold chase and lower mold chase of a mold press at a first temperature; positioning a molded underfill material in the at least one of the upper and lower mold chases while maintaining the first temperature which is lower than a melting temperature of the molded underfill material; forming a sealed mold cavity and creating a vacuum in the mold cavity; raising the temperature of the molded underfill material to a second temperature greater than the melting point to cause the molded underfill material to flow over the flip chip substrate forming an underfill layer and forming an overmolded layer; and cooling the flip chip substrate to a third temperature substantially lower than the melting temperature of the molded underfill material. An apparatus is disclosed.
Abstract:
An LED includes a first intermetallic layer, a first metal thin film layer, an LED chip, a substrate, a second metal thin film layer, and a second intermetallic layer. The first metal thin film layer is located on the first intermetallic layer. The LED chip is located on the first metal thin film layer. The second metal thin film layer is located on the substrate. The second intermetallic layer is located on the second metal thin film layer, and the first intermetallic layer is located on the second intermetallic layer. Materials of the first and the second metal thin film layer are selected from a group consisting of Au, Ag, Cu, and Ni. Materials of the intermetallic layers are selected from a group consisting of a Cu—In—Sn intermetallics, an Ni—In—Sn intermetallics, an Ni—Bi intermetallics, an Au—In intermetallics, an Ag—In intermetallics, an Ag—Sn intermetallics, and an Au—Bi intermetallics.
Abstract:
A die-bonding method is suitable for die-bonding a LED chip having a first metal thin-film layer to a substrate. The method includes forming a second metal thin film layer on a surface of the substrate; forming a die-bonding material layer on the second metal thin film layer; placing the LED chip on the die-bonding material layer with the first metal thin film layer contacting the die-bonding material layer; heating the die-bonding material layer at a liquid -solid reaction temperature for a pre-curing time, so as to form a first intermetallic layer and a second intermetallic layer; and heating the die-bonding material layer at a solid-solid reaction temperature for a curing time for performing a solid-solid reaction. The liquid-solid reaction temperature and the solid-solid reaction temperature are both lower than 110° C., and a melting point of the first and second intermetallic layers after the solid-solid reaction is higher than 200° C.