Abstract:
A structure comprises a post passivation interconnect layer formed over a semiconductor substrate, a metal bump formed over the post passivation interconnect layer and a molding compound layer formed over the semiconductor substrate. A lower portion of the metal bump is embedded in the molding compound layer and a middle portion of the metal bump is surrounded by a concave meniscus molding compound protection layer.
Abstract:
A method includes placing a cover over a lower package component, wherein the cover comprises an opening aligned to the lower package component. An upper package component is placed over the lower package component. The upper package component is aligned to the opening, and a solder region is dispose between the upper package component and the lower package component. The cover and the upper package component are exposed to a radiation to reflow the solder region.
Abstract:
A device includes a package component having conductive features on a top surface, and a polymer region molded over the top surface of the first package component. A plurality of openings extends from a top surface of the polymer region into the polymer region, wherein each of the conductive features is exposed through one of the plurality of openings. The plurality of openings includes a first opening having a first horizontal size, and a second opening having a second horizontal size different from the first horizontal size.
Abstract:
Packaging methods and structures for semiconductor devices are disclosed. In one embodiment, a packaged semiconductor device includes a redistribution layer (RDL) having a first surface and a second surface opposite the first surface. At least one integrated circuit is coupled to the first surface of the RDL, and a plurality of metal bumps is coupled to the second surface of the RDL. A molding compound is disposed over the at least one integrated circuit and the first surface of the RDL.
Abstract:
A light-emitting diode (LED) module and an LED packaging method. As the LED module is packaged under the consideration of candela distribution, each of the lead frames of the LED chips packaged in the LED module is bended for tilting the LED chips by different angles to exhibit various lighting effects. Meanwhile, in the LED packaging method, a plurality of LED chips can be loaded on board rapidly and aligned by one operation to result in less deviation in the candela distribution curve.
Abstract:
A system and method for forming metal bumps is provided. An embodiment comprises attaching conductive material to a carrier medium and then contacting the conductive material to conductive regions of a substrate. Portions of the conductive material are then bonded to the conductive regions using a bonding process to form conductive caps on the conductive regions, and residual conductive material and the carrier medium are removed. A reflow process is used to reflow the conductive caps into conductive bumps.
Abstract:
The disclosure relates to fabrication of to a metal pillar. An exemplary method of fabricating a semiconductor device comprises the steps of providing a substrate having a contact pad; forming a passivation layer extending over the substrate having an opening over the contact pad; forming a metal pillar over the contact pad and a portion of the passivation layer; forming a solder layer over the metal pillar; and causing sidewalls of the metal pillar to react with an organic compound to form a self-assembled monolayer or self-assembled multi-layers of the organic compound on the sidewalls of the metal pillar.
Abstract:
An intelligent storage system and an intelligent storage method thereof are disclosed. The system includes a cabinet and loading tables, each loading table includes an accommodating groove having a shape corresponding the shape of the object to be stored, and a sensing device in the accommodating groove. A central control device includes a processor electrically connected to the sensing device, the output device and an input device, and a system database for the processor to access or store information. The sensing devices senses whether there is a corresponding stored object in each accommodating groove to form a status signal carrying an identification code, and outputs it to the processor, then the processor accesses the corresponding information in the system database according to the identification code of the status signal, so as to realize the management and status display of the stored object, and effectively improve work safety and effectiveness.
Abstract:
Methods and apparatus for a forming molded underfills. A method is disclosed including loading a flip chip substrate into a selected one of the upper mold chase and lower mold chase of a mold press at a first temperature; positioning a molded underfill material in the at least one of the upper and lower mold chases while maintaining the first temperature which is lower than a melting temperature of the molded underfill material; forming a sealed mold cavity and creating a vacuum in the mold cavity; raising the temperature of the molded underfill material to a second temperature greater than the melting point to cause the molded underfill material to flow over the flip chip substrate forming an underfill layer and forming an overmolded layer; and cooling the flip chip substrate to a third temperature substantially lower than the melting temperature of the molded underfill material. An apparatus is disclosed.
Abstract:
Packaging methods and structures for semiconductor devices are disclosed. In one embodiment, a packaged semiconductor device includes a redistribution layer (RDL) having a first surface and a second surface opposite the first surface. At least one integrated circuit is coupled to the first surface of the RDL, and a plurality of metal bumps is coupled to the second surface of the RDL. A molding compound is disposed over the at least one integrated circuit and the first surface of the RDL.