Abstract:
A ferrite antenna is disclosed. The ferrite antenna includes a ferrite core a first main face, a second main face opposite to the first main face, and side faces connecting the first and second main faces. A first plurality of conductor wires are disposed at the first main face of the ferrite core; a second plurality of conductor wires disposed at the second main face of the ferrite core. A first connection member is disposed at a first side face of the ferrite core, the first connection member including a first plurality of connection wires; and a second connection member is disposed at a second side face of the ferrite core, the second connection member including a second plurality of connection wires; wherein the first and second pluralities of conductor wires and the first and second plurality of connection wires are interconnected in such a way that they form an antenna coil, wherein the ferrite core is disposed in the interior space of the antenna coil.
Abstract:
A semiconductor device includes a semiconductor chip and a plurality of electrical contact pads disposed on a main face of the semiconductor chip, wherein the electrical contact pads each include a layer stack, each layer stack having one and the same order of layers, and wherein the electrical contact pads are both solderable and bondable.
Abstract:
A semiconductor component includes a semiconductor body having a top side and a bottom side opposite the top side. A top metallization is applied to the top side and a bottom metallization is applied to the bottom side. A moisture barrier completely seals the semiconductor body in cooperation with the top metallization and the bottom metallization.
Abstract:
The electronic device for sensing a current comprises a semiconductor chip comprising a main face, an electronic circuit integrated in the semiconductor chip, a redistribution metallization layer disposed above the main face of the semiconductor chip, a current path formed in the redistribution metallization layer, the current path forming a resistor that is connected at two resistance defining end points to the electronic circuit for sensing a current flowing through the current path, and external contact elements connected with the redistribution metallization layer for feeding a current to be sensed into the current path.
Abstract:
A number of semiconductor chips each include a first main face and a second main face opposite to the first main face. A first encapsulation layer is applied over the second main faces of the semiconductor chips. An electrical wiring layer is applied over the first main faces of the first semiconductor chips. A second encapsulation layer is applied over the electrical wiring layer. The thickness of the first encapsulation layer and the thicknesses of the first semiconductor chips is reduced. The structure can be singulated to obtain a plurality of semiconductor devices.
Abstract:
A method of producing and testing a chip package is described. The chip package to be produced includes a semiconductor chip containing an integrated circuit and a reinforcing structure attached to the semiconductor chip. Further, the chip package has a lower main face and an upper main face opposite to the lower main face, wherein the lower main face is at least partly formed by an exposed surface of the semiconductor chip and the upper main face is formed by a terminal surface of the reinforcing structure on which external terminal pads of the chip package are arranged. After production, the package is subjected to a package-level burn-in test.
Abstract:
In various embodiments, a chip for a chip package is provided. The chip may include a substrate and an integrated circuit over the substrate. The integrated circuit may include a test circuit, for example a built-in self-test circuit, and an operation circuit, the test circuit including one or more first driver stages each having a first driver performance and the operation circuit including one or more second driver stages each having a second driver performance which is different from the first driver performance, first contacts electrically coupled with the first driver stages, and second contacts electrically coupled with the second driver stages, wherein the test circuit and the first contacts are configured to provide a test mode for testing the integrated circuit and wherein the operation circuit and the second contacts are configured to provide an operating mode of the integrated circuit being different from the test mode.
Abstract:
A semiconductor arrangement includes upper and lower contact plates and basic chip assemblies. Each chip assembly has a semiconductor chip having a semiconductor body with upper and lower spaced apart sides. An individual upper main electrode and an individual control electrode are arranged on the upper side. The chip assemblies have either respectively a separate lower main electrode arranged on the lower side of the semiconductor chip of the corresponding basic chip assembly, or a common lower main electrode, which for each of the chip assemblies is arranged on the lower side of the semiconductor body of that chip assembly. An electrical current between the individual upper main electrode and the individual or common lower main electrode is controllable by its control electrode. The chip assemblies are connected to one another with a material bonded connection by a dielectric embedding compound, forming a solid assembly.
Abstract:
A power semiconductor module includes a power semiconductor die attached to the first metallized side, a passive component attached to the first metallized side, a first isolation layer encapsulating the power semiconductor die and the passive component, a first structured metallization layer on the first isolation layer, and a first plurality of electrically conductive vias extending through the first isolation layer from the first structured metallization layer to the power semiconductor die and the passive component.
Abstract:
A method for manufacturing an embedded chip package is provided. The method may include: forming electrically conductive lines over a substrate; placing the substrate next to a chip arrangement comprising a chip, the chip comprising one or more contact pads, wherein one or more of the electrically conductive lines are arranged proximate to a side wall of the chip; and forming one or more electrical interconnects over the chip arrangement to electrically connect at least one electrically conductive line to at least one contact pad.