Abstract:
The present invention aims to provide a substrate for mounting an IC chip, on which an optical signal passing region is formed and which can suppress a transmission loss in an optical signal and transmit an optical signal more positively with high reliability. The substrate for mounting an IC chip according to the present invention is a substrate for mounting an IC chip, in which a conductor circuit and an insulating layer are laminated in alternate fashion and in repetition on both faces of a substrate and an optical element is mounted on the substrate. Herein, the substrate for mounting an IC chip includes an optical signal passing region, and a microlens arranged on an end portion of the optical signal passing region on the opposite side from the optical element.
Abstract:
The present invention has for its object to provide a multilayer printed circuit board which is very satisfactory in facture toughness, dielectric constant, adhesion and processability, among other characteristics. The present invention is directed to a multilayer printed circuit board comprising a substrate board, a resin insulating layer formed on said board and a conductor circuit constructed on said resin insulating layer, wherein said resin insulating layer comprises a polyolefin resin.
Abstract:
A chip capacitor 20 is provided in a core substrate 30 of a printed circuit board 10. This makes it possible to shorten a distance between an IC chip 90 and the chip capacitor 20 and to reduce loop inductance. Since the core substrate 30 id constituted by provided a first resin substrate 30a, a second resin substrate 30b and a third resin substrate 30c in a multilayer manner, the core substrate 30 can obtain sufficient strength.
Abstract:
Chip capacitors 20 are provided in a printed circuit board 10. In this manner, the distance between an IC chip 90 and each chip capacitor 20 is shortened, and the loop inductance is reduced. In addition, the chip capacitors 20 are accommodated in a core substrate 30 having a large thickness. Therefore, the thickness of the printed circuit board does not become large.
Abstract:
Chip capacitors 20 are provided in a printed circuit board 10. In this manner, the distance between an IC chip 90 and each chip capacitor 20 is shortened, and the loop inductance is reduced. In addition, the chip capacitors 20 are accommodated in a core substrate 30 having a large thickness. Therefore, the thickness of the printed circuit board does not become large.
Abstract:
A multi-layer printed wiring board includes a board covered with a conductor layer, an interlayer insulating resin layer, an etched metal film on the interlayer insulating resin layer, and a via hole. The interlayer insulating resin layer has a fibrous substrate. The via hole has an electrolytic plated film and an electrolessly plated film and connects the conductor layer of the board and the etched metal film.
Abstract:
The present invention is to provide a multilayered printed circuit board free from cracks attributed to thermal expansion difference between a solder resist layer and another part and a multilayered printed circuit board of the present invention comprises a conductor circuit and a resin insulating layer serially formed on a substrate in an alternate fashion and in repetition and a solder resist layer formed as an outermost layer, and the solder resist layer contains an inorganic filler.
Abstract:
Chip capacitors 20 are provided in a printed circuit board 10. In this manner, the distance between an IC chip 90 and each chip capacitor 20 is shortened, and the loop inductance is reduced. In addition, the chip capacitors 20 are accommodated in a core substrate 30 having a large thickness. Therefore, the thickness of the printed circuit board does not become large.
Abstract:
A printed circuit board is by formed by laminating an interlaminar insulating layer on a conductor circuit of a substrate, in which the conductor circuit is comprised of an electroless plated film and an electrolytic plated film and a roughened layer is formed on at least a part of the surface of the conductor circuit.
Abstract:
An object of the present invention is to provide a substrate for mounting an IC chip which is a component for optical communication having an IC chip and an optical component integrally provided thereon, which can ensure a short distance between the IC chip and the optical component, which is excellent in electric signal transmission reliability and which can transmit optical signal through an optical path for transmitting optical signal. The substrate for mounting an IC chip of the present invention is a substrate for mounting an IC chip comprising: a substrate and, as serially built up on both faces thereof, a conductor circuit and an interlaminar insulating layer in an alternate fashion and in repetition; a solder resist layer formed as an outermost layer; and an optical element mounted thereto, wherein an optical path for transmitting optical signal, which penetrates the substrate for mounting an IC chip, is disposed.