Abstract:
A method and system for controlling flow motion in a channel/cavity in a microfluidic system includes positioning at least one pair of electrodes in and/or proximate to the channel/cavity. A buffer solution is placed in the channel/cavity, the buffer solution having at least one dielectric property that varies in response to changes in temperature of the solution. An AC/DC voltage is applied to the electrodes to generate an electric field in the channel/cavity; the AC voltage having a known magnitude and frequency and the DC voltage having a known magnitude. The magnitude of the AC/DC voltage is adjusted to cause Joule heating of the buffer solution in the channel/cavity. The geometry and position of the electrodes is adjusted to generate a temperature gradient in the buffer solution, thereby causing a non-uniform distribution of the dielectric property within the solution in the channel/cavity. The dielectric non-uniformity produces a body force and flow in the solution. Also, the frequency of the AC voltage is adjusted to generate flow of the buffer solution in the channel/cavity in response to the non-uniform distribution of the dielectric property.
Abstract:
Devices and methods are provided for performing a test to detect and/or quantify the presence of an analyte of interest within a sample using a portable instrument.
Abstract:
The present invention relates to a method for detecting and/or identifying bacteria present in a liquid or solid sample, characterized in that: a. the sample that may contain said bacteria is placed in a liquid culture medium, in a first container, b. a second container comprising at least one system for detecting said bacteria is provided, c. a means of transfer between the first container and the second container is provided, d. a temperature T1 is applied inside the second container, then e. a temperature T2 is applied inside the second container, f. the temperature T1 is higher than the temperature T2 such that a defined volume of culture medium is transferred from the first container to the second container, g. the presence or absence of bacteria is determined and/or the bacteria are identified within the detection system.
Abstract:
Embodiments of droplet transport systems and methods are disclosed for levitating and transporting single or encapsulated droplets using thermocapillary convection. One method embodiment, among others comprises providing a droplet of a first liquid; and applying thermocapillary convection to the droplet to levitate and move the droplet.
Abstract:
A device for handling liquid samples, comprising a flow path with at least one zone for receiving the sample, and a transport or incubation zone, said zones connected by or comprising an area having projections substantially vertical to its surface, said device provided with a sink with a capacity of receiving said liquid sample, said sink comprising an area having projections substantially vertical to its surface, and said sink being adapted to respond to an external influence regulating its capacity to receive said liquid sample.
Abstract:
The invention is directed to devices that allow for simultaneous multiple biochip analysis. In particular, the devices are configured to hold multiple cartridges comprising biochips comprising arrays such as nucleic acid arrays, and allow for high throughput analysis of samples.
Abstract:
A cell analysis and sorting apparatus is capable of monitoring over time the behavior of each cell in a large population of cells. The cell analysis and sorting apparatus contains individually addressable cell locations. Each location is capable of capturing and holding a specified number of cells, and selectively releasing that specified number of cells from that particular location. In one aspect of the invention, the cells are captured and held in wells, and released using vapor bubbles as a means of cell actuation. Disclosed are: a cell manipulation apparatus design; various resistive heater configurations for nucleating microbubbles; various well designs, each in communication with a nucleation chamber or channel, for capturing a specified number of cells; and methods of fabrication and cell population manipulation.
Abstract:
A method for forming an array of viable cells is provided. In one embodiment, the method comprises ink-jet printing a cellular composition containing cells onto a substrate. Upon printing, at least about 25% of the cells remain viable after incubation for 24 hours at 37° C. in a 5% CO2/95% O2 environment.
Abstract:
The movement and mixing of microdroplets through microchannels is described employing silicon-based microscale devices, comprising microdroplet transport channels, reaction regions, electrophoresis modules, and radiation detectors. The discrete droplets are differentially heated and propelled through etched channels. Electronic components are fabricated on the same substrate material, allowing sensors and controlling circuitry to be incorporated in the same device.