Abstract:
A method of manufacturing an optical component embedded printed circuit board, the method including: stacking a first insulation layer on one side of a metal core; embedding an optical component in a cavity formed in the metal core; stacking a second insulation layer of a transparent material on the other side of the metal core; and forming a circuit pattern on the first insulation layer, the circuit pattern electrically connected with the optical component.
Abstract:
A printed circuit board is disclosed. A printed circuit board, which includes a first board part, a flexible board part which has one side coupled with the first board part and which includes an electrical wiring layer and an optical waveguide to transmit both electrical signals and optical signals, and a second board part coupled with the other side of the flexible board part, where the electrical wiring layer and the optical waveguide are disposed with a gap in-between, can provide greater bendability and reliability, by having the optical waveguide and electrical wiring layer separated with a gap in-between at the flexible portion of the board, and the optical waveguide can be manufactured with greater precision for even higher reliability, by having the optical waveguide manufactured separately and then inserted during the manufacturing process of the board.
Abstract:
A method of manufacturing a cooling fin and package substrate that includes preparing a mold, which has a support base and a resin layer formed on the support base and including on a side thereof a groove, which is configured to form a cooling fin; printing fireable paste containing a carbon component on a side of the mold that has the groove configured to form a cooling fin; removing the support base to leave a cooling object; and firing the cooling object.
Abstract:
A printed circuit board and a method of manufacturing the printed circuit board, in which the printed circuit board includes an insulating layer, a circuit layer embedded in the insulating layer and having a connection pad that is embedded in the insulating layer such that one side of the connection pad is flush with a surface of the insulating layer, and insulating materials configured to protect the circuit layer from an external environment and having an opening through which the connection pad is exposed. The printed circuit board is made slim, and reliability and the degree of design freedom are increased.
Abstract:
Disclosed herein is a printed circuit board having electronic components embedded therein. The printed circuit board having electronic components embedded therein includes: a metal core layer connected to a ground terminal of an external power supply to be grounded and having a cavity or a groove part formed thereon; an electronic component accommodated in the cavity and having a plurality of terminals, a ground terminal included in the plurality of terminals being connected to the metal core layer; an internal insulating layer stacked on both sides of the metal core layer; and circuit patterns formed on an external surface of the internal insulating layer.
Abstract:
A method of manufacturing a multilayered circuit board, including: providing a double-sided copper clad laminate including via holes formed therethrough and openings for forming circuit patterns, formed by patterning copper foil formed on one side thereof; filling the via holes and the openings with conductive paste; removing the copper foil from the double-sided copper clad laminate to form a first circuit layer including circuit patterns on one side thereof and to form a second circuit layer including connecting pads for attaching solder balls thereto on the other side thereof; forming a build-up layer on the first circuit layer, the build-up layer including a plurality of insulating layers and a plurality of circuit layers; and forming a solder resist layer on an outermost layer of the build-up layer.
Abstract:
A method of manufacturing a cooling fin and package substrate that includes preparing a mold, which has a support base and a resin layer formed on the support base and including on a side thereof a groove, which is configured to form a cooling fin; printing fireable paste containing a carbon component on a side of the mold that has the groove configured to form a cooling fin; removing the support base to leave a cooling object; and firing the cooling object.
Abstract:
A method of embedding a chip capacitor in a printed circuit board including a first conductive layer and a dielectric layer placed on the first conductive layer includes removing the dielectric layer to form a cavity exposing the first conductive layer; seating a chip capacitor in the cavity; filling a filled material at a space excluding a space occupied by the chip capacitor in the cavity; forming a via penetrating the filled material and being connected to the chip capacitor; and stacking a conductive material to constitute a second conductive layer in surfaces of the via and the dielectric layer and in an surface of the filled material filled in the cavity.
Abstract:
A printed circuit board having an embedded cavity capacitor is disclosed. According to an embodiment of the present invention, the printed circuit board having the embedded cavity capacitor, the printed circuit board can include two conductive layers to be used as a power layer and a ground layer, respectively; and a first dielectric layer, placed between the two conductive layers, wherein at least one cavity capacitor is arranged in a noise-transferable path between a noise source and a noise prevented destination which are placed on the printed circuit board, the cavity capacitor being formed to allow a second dielectric layer to have a lower stepped region than the first dielectric layer, the second dielectric layer using the two conductive layers as a first electrode and a second electrode, respectively, and placed between the first electrode and the second electrode.
Abstract:
A manufacturing method of bottom substrate of package. A bottom substrate of a package on package electrically connected to a top substrate by means of a solder ball, including a core board, a solder ball pad formed on a surface of the core board in correspondence with a location of the solder ball, an insulation layer laminated on the core board, a through hole formed by removing a part of the insulation layer such that the solder ball pad is exposed, and a metallic layer filled in the through hole and connected electrically with the solder ball, allows the number of ICs mounted on a bottom substrate to be increased without increasing the size of a solder ball, and allows the size and pitch of the solder balls to be made smaller by controlling the thickness of the insulation layer laminated on the bottom substrate, whereby more signal transmission is possible between a top substrate and a bottom substrate.