摘要:
A microelectronic package comprising a circuit carrier having a power chip, an integrated circuit means, and thermal conduction means for carrying heat from the microelectronic package is provided. The thermal conduction means includes a first heat dissipation back plate means associated with the power chip and a second heat dissipation back plate means associated with the integrated circuit means. The heat dissipation back plate means are electrically isolated from each other and have different heat dissipation capacity.
摘要:
A method of forming a printed circuit board or circuit card is provided with a metal layer which serves as a power plane sandwiched between a pair of photoimageable dielectric layers. Photoformed metal filled vias and photoformed plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials and connected to the vias and plated through holes. A border may be around the board or card including a metal layer terminating in from the edge of one of the dielectric layers. A copper foil is provided with clearance holes. First and second layers of photoimageable curable dielectric material is disposed on opposite sides of the copper which are photoimageable material. The patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. At the clearance holes in the copper, through holes are developed where holes were patterned in both dielectric layers. Thereafter, the surfaces of the photoimageable material, vias and through holes are metalized by copper plating. This is preferably done by protecting the remainder of the circuitry with photoresist and utilizing photolithographic techniques. The photoresist is thereafter removed, leaving a circuit board or card having metalization on both sides, vias extending from both sides to the copper layer in the center, plated through holes connecting the two outer circuitized copper layers.
摘要:
A method of forming a printed circuit card with a metal power plane layer between two photoimageable dielectric layers is provided. Photoformed metal filled vias and plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials connected to the vias and plated through holes. A border may be around the card including a metal layer terminating in from the edge of one of the dielectric layers. Copper foil with clearance holes is provided. First and second layers of photoimageable curable dielectric material are on opposite sides of the copper. Patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. Through holes are developed where holes were patterned in both dielectric layers. The surfaces of the photoimageable material, vias and through holes are metallized by copper plating, preferably using photoresist.
摘要:
A method of forming a printed circuit board or circuit card is provided with a metal layer which serves as a power plane sandwiched between a pair of photoimageable dielectric layers. Photoformed metal filled vias and photoformed plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials and connected to the vias and plated through holes. A border may be around the board or card including a metal layer terminating in from the edge of one of the dielectric layers. A copper foil is provided with clearance holes. First and second layers of photoimageable curable dielectric material is disposed on opposite sides of the copper which are photoimageable material. The patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. At the clearance holes in the copper, through holes are developed where holes were patterned in both dielectric layers. Thereafter, the surfaces of the photoimageable material, vias and through holes are metalized by copper plating. This is preferably done by protecting the remainder of the circuitry with photoresist and utilizing photolithographic techniques. The photoresist is thereafter removed, leaving a circuit board or card having metalization on both sides, vias extending from both sides to the copper layer in the center, plated through holes connecting the two outer circuitized copper layers.
摘要:
A method of forming a printed circuit card with a metal power plane layer between two photoimageable dielectric layers is provided. Photoformed metal filled vias plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials connected to the vias and plated through holes. A border may be around the card including a metal layer termination in from the edge of one of the dielectric layers. Copper foil with clearance holes is provided. First and second layers of photoimageable curable dielectric material are on opposite sides of the copper. Patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. Through holes are developed where holes were patterned in both dielectric layers. The surfaces of the photoimageable material, vias and through holes are metallized by copper plating, preferably using photoresist.
摘要:
A method of forming a capacitive element for a circuit board or chip carrier having improved capacitance is provided. The element is formed from a pair of conductive sheets having a dielectric component laminated therebetween. The dielectric component is formed of two or more dielectric sheets, at least one of which can be partially cured followed by being fully cured. The lamination takes place by laminating a partially cured sheet to at least one other sheet of dielectric material and one of the conductive sheets. The total thickness of the two sheets of the dielectric component does not exceed about 4 rolls and preferably does not exceed about 3 mils; thus, the single dielectric sheet does not exceed about 2 mils and preferably does not exceed about 1.5 mils in thickness.
摘要:
A capacitive element for a circuit board or chip carrier having improved capacitance and method of manufacturing the same is provided. The structure is formed from a pair of conductive sheets having a dielectric component laminated therebetween. The dielectric component is formed of two or more dielectric sheets, at least one of which can be partially cured or softened followed by being fully cured or hardened. The lamination takes place by laminating a partially cured or softened sheet to at least one other sheet of dielectric material and one of the sheets of conductive material. The total thickness of the two sheets of the dielectric component does not exceed about 4 mils and preferably does not exceed about 3 mils; thus, the single dielectric sheet does not exceed about 2 mils and preferably does not exceed about 1.5 mils in thickness. The use of two or more sheets of dielectric material makes it very unlikely that two or more defects in the sheets of dielectric material will align, thus greatly reducing the probability of a defect causing a failure in test or field use.
摘要:
A printed circuit board for use in an electronic device package such as a ball grid array package or organic chip carrier package. This printed circuit board includes a glass-free dielectric for separating and insulating power cores, circuitry or plated through holes from each other to prevent shorts caused by a migration of conductive material along glass-based prepreg substrates.
摘要:
A circuit board having a structure including a permanent photoimageable dielectric material suitable for fabrication of vias both by laser ablation, plasma ablation, or mechanical drilling techniques and by photoimaging techniques. A process is also disclosed for the manufacture of a multi-level circuit on a substrate having a first-level circuitry pattern on at least one side. The process comprises applying a permanent photoimageable dielectric over the first-level circuitry pattern; exposing the permanent photoimageable dielectric to radiation; laminating a conductive metal layer to the dielectric; making holes in the conductive metal layer and dielectric by mechanical drilling or by laser or plasma ablation; and making a second-level circuitry pattern and filling the holes with a conductive material to electrically connect the first and second layers of circuitry. A further process is claimed for designing a multi-level circuit board product comprising making a prototype having the above structure in which the holes are manufactured by mechanical drilling or by laser or plasma ablation, evaluating the prototype, and then manufacturing a commercial circuit board having essentially the same structure and materials of construction as the prototype, but wherein the holes are manufactured by photoimaging techniques.
摘要:
A method is provided for connecting two conductive layers in an electronic circuit package comprising the steps of forming dendrites on selected regions of a first conductive layer, forming dendrites on selected regions of a second conductive layer, applying an epoxy adhesive material over the first conductive layer, and compressively attaching the second conductive layer to the first conductive layer such that the dendrites on the first conductive layer contact the dendrites on the second conductive layer. Also claimed is an electronic circuit package incorporating the dendrites used for electrical interconnection manufactured in accordance with the present invention. An alternative embodiment of the invention utilizes an intermediate surface metal with dendrites in place of a “through via.”