Abstract:
A method for manufacturing a microelectronic assembly including stacked first and second microelectronic components having a cavity therebetween including defining said cavity by means of a lateral wall forming a closed frame extending around a determined area of the first component except for an opening used as a vent; forming within the closed frame and opposite to the vent an obstacle capable of forming, in cooperation with the lateral wall, a bypass duct for the filling material; performing a flip-chip hybridization of the first and second components, a surface of the second component resting on the upper edge or end of the lateral wall formed on the first component to form said at least one cavity; injecting the filling material in liquid form between the two hybridized components to embed said at least one cavity and to make it tight by obstruction of the vent as said filling material solidifies.
Abstract:
A connection device between two components includes a hollow conductive insert, into which is fitted another conductive insert, the electrical connection between the two inserts being provided by means of a solder element.
Abstract:
The hybridization method provides a first component with first pads and a second component with second pads for accommodating protrusions of a fusible material, so that the first pads and second pads line up two by two in order to form pairs of pads to interconnect the two components when aligned. Then placing the first and second components one on top of the other to form an assembly where some of the protrusions of fusible material on the first and/or second pads respectively consist of at least three larger-sized protrusions, especially taller protrusions, so that before the temperature is increased to the hybridization temperature of the fusible material, the component only rests on the larger protrusions.
Abstract:
The invention concerns a method of collective bonding of individual chips on a strained substrate (44), which comprises the following steps: functionalised layers (40) are arranged on a support (41), in an adjacent non-contiguous manner, with a space e between two neighboring layers (40), a calibrated drop of adhesive (43) is deposited on each of these functionalised layers, the strained substrate (44) is transferred onto these drops of adhesive, the parts of the assembly thereby formed are singularized to produce chips (45) bonded to the surface of strained substrate. The invention also concerns a method of placing under strain a semiconductor reading circuit by a substrate in a material of different coefficient of expansion.
Abstract:
The invention relates to a method for producing a matrix of electronic components, comprising a step of producing an active layer on a substrate, and a step of individualizing the components by forming trenches in the active layer at least until the substrate emerges. The method comprises steps of depositing a layer of functional material on the active layer, depositing a photosensitive resin on the layer of material in such a way as to fill said trenches and to form a thin film on the upper face of the components, at least partially exposing the resin to radiation while underexposing the portion of resin in the trenches, developing the resin in such a way as to remove the properly exposed portion thereof, removing the functional material layer portion that shows through after the development step, and removing the remaining portion of resin.
Abstract:
The invention concerns a method of collective bonding of individual chips on a strained substrate (44), which comprises the following steps: functionalised layers (40) are arranged on a support (41), in an adjacent non-contiguous manner, with a space e between two neighbouring layers (40), a calibrated drop of adhesive (43) is deposited on each of these functionalised layers, the strained substrate (44) is transferred onto these drops of adhesive, the parts of the assembly thereby formed are singularised to produce chips (45) bonded to the surface of strained substrate. The invention also concerns a method of placing under strain a semiconductor reading circuit by a substrate in a material of different coefficient of expansion.
Abstract:
The invention concerns a nanoprinted device comprising point shaped metallic patterns, in which. each metallic pattern has a bilayer structure controlled in hardness and in chemical properties comprising a lower layer (30) constituting the base of the point and an upper layer (31) constituting the point itself.
Abstract:
A method for obtaining layers defined on a hybrid circuit. The hybrid circuit including a substrate and at least one elementary circuit that includes a first facet and a second facet, being hybridized via the second facet to a facet of the substrate. This facet of the substrate and each elementary circuit are coated with a first layer, the first layer is removed from the first facet of the elementary circuit, the first facet and the subsisting part of the first layer are coated with a second layer, and the subsisting part and the second layer covering it are removed. Such a method may, for example, find application to obtaining an antireflection or metal layer on a chip.
Abstract:
The invention relates to a method for manufacturing chips composed of at least one electrically conductive material. Such a method comprises the following steps: deposition, on a support, of an alloy comprising at least the electrically conductive material and a second material; exposure of the alloy to plasma etching, in order to cause the desorption of the materials of the alloy not forming part of the composition of the chips, that is at least the second material but not the electrically conductive material; formation of chips composed of at least said electrically conductive material.
Abstract:
A method for encapsulating a component by using a chamber in which there is a vacuum or controlled atmosphere, positioning a continuous sealing seam made of a metal or a metal alloy on a wettable surface previously placed on a substrate including at least one component and extending around the periphery of the component(s), positioning a package on the sealing seam, and raising the temperature inside the chamber to fuse the material that constitutes the sealing seam, thereby causing the package to drop onto the substrate and form a leaktight, hermetic seal between the package and the substrate.