摘要:
An integrated circuit assembly has pads of a chip electrically connected to pads of a substrate with rolling metal balls. A pliable material bonds the balls in movable contact with pads of the chip and substrate. Because the balls are relatively free to move, thermal expansion differences that would ordinarily cause enormous stresses in the attached joints of the prior art, simply cause rolling of the balls of the present invention, avoiding thermal stress altogether. Reliability of the connections is substantially improved as compared with C4 solder bumps, and chips can be safely directly mounted to such substrates as PC boards, despite substantial thermal mismatch.
摘要:
An integrated circuit assembly has pads of a chip electrically connected to pads of a substrate with rolling metal balls. A pliable material bonds the balls in movable contact with pads of the chip and substrate. Because the balls are relatively free to move, thermal expansion differences that would ordinarily cause enormous stresses in the attached joints of the prior art, simply cause rolling of the balls of the present invention, avoiding thermal stress altogether. Reliability of the connections is substantially improved as compared with C4 solder bumps, and chips can be safely directly mounted to such substrates as PC boards, despite substantial thermal mismatch.
摘要:
A method and device for testing and burning-in semiconductor circuits. The method and device permit the entire wafer to be tested by temporarily attaching the wafer to a test substrate using electrically conductive adhesive (ECA). The ECA conforms to deviations from co-planarity of the contact points of both the wafer and test substrate while providing a quality electrical connection at each point. ECA material can be deposited on either the wafer contacts or the substrate pads. In addition, the ECA may be deposited on C4 bumps or tin-capped lead bases. Variations in the method and device include filling vias of a non-conductive interposer with ECA. The electrical connection may be enhanced by forming conductive dendrites on test pads while the ECA is deposited on the wafer contacts. To further enhance the electrical connection, the ECA material can be plasma etched to remove some of its polymer matrix and to expose the electrically conductive particles on one side and then plating with palladium. After the palladium-plated ECA is brought into contact with aluminum pads, palladium-coated aluminum pads, or even C4 solder bumps, conductive dendrites are formed on the palladium-treated ECA bumps.
摘要:
A method and device for testing and burning-in semiconductor circuits. The method and device permit the entire wafer to be tested by temporarily attaching the wafer to a test substrate using electrically conductive adhesive (ECA). The ECA conforms to deviations from co-planarity of the contact points of both the wafer and test substrate while providing a quality electrical connection at each point. ECA material can be deposited on either the wafer contacts or the substrate pads. In addition, the ECA may be deposited on C4 bumps or tin-capped lead bases. Variations in the method and device include filling vias of a non-conductive interposer with ECA. The electrical connection may be enhanced by forming conductive dendrites on test pads while the ECA is deposited on the wafer contacts. To further enhance the electrical connection, the ECA material can be plasma etched to remove some of its polymer matrix and to expose the electrically conductive particles on one side and then plating with palladium. After the palladium-plated ECA is brought into contact with aluminum pads, palladium-coated aluminum pads, or even C4 solder bumps, conductive dendrites are formed on the palladium-treated ECA bumps.
摘要:
A method and device for testing and burning-in semiconductor circuits. The method and device permit the entire wafer to be tested by temporarily attaching the wafer to a test substrate using electrically conductive adhesive (ECA). The ECA conforms to deviations from co-planarity of the contact points of both the wafer and test substrate while providing a quality electrical connection at each point. ECA material can be deposited on either the wafer contacts or the substrate pads. In addition, the ECA may be deposited on C4 bumps or tin-capped lead bases. Variations in the method and device include filling vias of a non-conductive interposer with ECA. The electrical connection may be enhanced by forming conductive dendrites on test pads while the ECA is deposited on the wafer contacts. To further enhance the electrical connection, the ECA material can be plasma etched to remove some of its polymer matrix and to expose the electrically conductive particles on one side and then plating with palladium. After the palladium-plated ECA is brought into contact with aluminum pads, palladium-coated aluminum pads, or even C4 solder bumps, conductive dendrites are formed on the palladium-treated ECA bumps.
摘要:
An electrical structure, and associated method of fabrication, for reducing thermally induced strain in a structure that couples a first conductive body of a first substrate to a second conductive body of a second substrate (e.g., a chip to a chip carrier; a chip carrier to a circuit card). The melting point of the first conductive body exceeds the melting point of the second conductive body. The second conductive body may include eutectic lead-tin alloy, while the first conductive body may include non-eutectic lead-tin alloy. A portion of the first conductive body is coated with, or volumetrically surrounded by, a material that is nonsolderable and nonconductive. The first and second conductive bodies are coupled mechanically and electrically by surface adhesion at an uncoated portion of the first conductive body, by application of a temperature that lies between the melting points of the first and second conductive bodies.
摘要:
A method and structure for conductively coupling a metallic stiffener to a chip carrier. A substrate has a conductive pad on its surface and an adhesive layer is formed on the substrate surface. The metallic stiffener is placed on the adhesive layer, wherein the adhesive layer mechanically couples the stiffener to the substrate surface and electrically couples the stiffener to the pad. The adhesive layer is then cured such as by pressurization at elevated temperature. Embodiments of the present invention form the adhesive layer by forming an electrically conductive contact on the pad and setting a dry adhesive on the substrate, such that the electrically conductive contact is within a hole in the dry adhesive. The electrically conductive contact electrically couples the stiffener to the pad. The curing step includes curing both the dry adhesive and the electrically conductive contact, resulting in the dry adhesive adhesively coupling the stiffener to the substrate. The electrically conductive contact may include an electrically conductive adhesive or a metallic solder. Additional embodiments of the present invention form the adhesive layer by applying an electrically conductive adhesive on the substrate, wherein after the stiffener is placed on the adhesive layer, the electrically conductive adhesive mechanically and electrically couples the stiffener to the surface of the substrate.
摘要:
A method for aligning a plurality of thin film transistor tiles for constructing a flat panel display. A coverplate is arranged on a coverplate support. A first layer of a bonding material is applied to at least one of a first side of each of the tiles and a surface of the coverplate on which the tiles are to be secured. The tiles are arranged on the coverplate, such that the first layer of bonding material is arranged between the tiles and the coverplate. The tiles are connected to an alignment apparatus. The tiles are aligned relative to each other and the coverplate. The tiles are at least partially secured to the coverplate.
摘要:
A method of making an electrically conductive contact on a substrate by applying a layer of solder paste to a circuitized feature on a substrate and selectively heating and melting the solder paste over the feature to form a solder bump. The excess solder paste is removed. A focused energy heat source such as a laser beam or focused Infrared heats the solder paste. In another embodiment, a reflective mask with apertures may be used to allow focused heating source to selectively melt areas of the solder paste layer applied to a circuitized feature. In yet another embodiment, a reflective mask with apertures filled with solder paste is applied onto a substrate and then heated to cause localized solder melting. The mask and excess solder paste are removed.
摘要:
A screen printing fixture holds a flexible circuit board having components attached to one side, to allow screening a pattern of solder paste onto the second side for subsequent attachment of components to that side. In an electronic package assembly a flexible circuit board with components is wound about a heat spreader assembly having a cavity so that at least one component on the flexible circuit board is positioned within the cavity and in thermal connection to the heat spreader.