Abstract:
There is provided a method for manufacturing an electronic component package. The method includes (i) providing a package precursor in which an electronic component is embedded such that an electrode of the electronic component is exposed at a surface of a sealing resin layer; (ii) forming a first metal plating layer such that the first metal plating layer is in contact with the exposed surface of the electrode of the electronic component; (iii) disposing a metal foil in face-to-face spaced relationship with respect to the first metal plating layer; and (iv) forming a second metal plating layer, wherein in the step (iv), the second metal plating layer is formed to fill a clearance between the first metal plating layer and the metal foil with the second metal plating layer, and thereby integrating the metal foil, the first metal plating layer and the second metal plating layer with each other.
Abstract:
There is provided a semiconductor device. The semiconductor device of the present invention includes a semiconductor element and a metal buffer layer in an electrical connection to the semiconductor element. The metal buffer layer and the semiconductor element are in a connection with each other by mutual surface contact of the metal buffer layer and the semiconductor element. The metal buffer layer is an external connection terminal used for a mounting with respect to a secondary mount substrate, and the metal buffer layer serves as a buffer part having a stress-relaxation effect between the semiconductor element and the secondary mount substrate.
Abstract:
A method for manufacturing an electronic component package. The method includes (i) providing a package precursor in which an electronic component is embedded such that an electrode of the electronic component is exposed at a surface of a sealing resin layer; (ii) forming a first metal plating layer such that the first metal plating layer is in contact with the exposed surface of the electrode of the electronic component; (iii) disposing a metal foil in face-to-face spaced relationship with respect to the first metal plating layer; and (iv) forming a second metal plating layer. In step (iv), the second metal plating layer is formed so as to fill a clearance between the first metal plating layer and the metal foil, thereby integrating the metal foil, the first metal plating layer and the second metal plating layer with each other.
Abstract:
An electrochemical detector is an electrochemical detector for detecting a substance in a liquid by generating a redox cycle, the electrochemical detector comprising: a first working electrode having a first electrode surface, a second working electrode having a second electrode surface, and a plurality of insulating spacer particles, wherein the first and second electrode surfaces are placed so as to face each other so that an electric field is formed between the first and second electrode surfaces, and the plurality of spacer particles are placed along the first and second electrode surfaces so as to separate the first and second electrode surfaces from each other.
Abstract:
A method for manufacturing an electronic component package comprises: (i) preparing a metal foil having opposed principal surface “A” for placement of an electronic component and principal surface “B”, and a through-hole located in an electronic component-placement region of the principal surface “A”; (ii) placing the electronic component on the metal foil such that the electronic component is positioned in the electronic component-placement region, and an opening of the through-hole is capped with an electrode of the electronic component; (iii) forming a sealing resin layer on the principal surface “A” such that the electronic component is covered with the sealing resin layer; and (iv) forming a metal plating layer on the principal surface “B”. A dry plating process and a subsequent wet plating process are performed to form the metal plating layer in the (iv) such that the through-hole is filled with the metal plating layer, and the metal foil and the metal plating layer are integrated with each other.
Abstract:
There is provided a method for manufacturing an electronic component package, wherein a package precursor is provided, in which an electronic component is embedded in a sealing resin layer such that an electrode of the electronic component is exposed at a surface of the sealing resin layer. In the manufacturing method of the present invention, a combination of a formation process of a plurality of metal plating layers and a patterning process of the metal plating layers is provided to form a step-like metal plating layer, the formation process being performed by sequential dry and wet plating processes with respect to the package precursor, the patterning process being performed by a patterning of at least two of the metal plating layers.
Abstract:
There is provided a method for manufacturing an electronic component package, wherein a first electronic component and a second electronic component are placed on a carrier, and a sealing resin layer is formed on the carrier, followed by the carrier being peeled away to be removed, and thereby providing a package precursor in which the first and second electronic components are embedded such that an electrode of at least one of the first and second electronic components is exposed at a surface of the sealing resin layer. Upon the placing of the first and second electronic components, the first and second electronic components are positioned such that their height levels differ from each other. After the removal of the carrier, a metal plating layer is formed such that the metal plating layer is in contact with the exposed surface of the electrode of the at least one of the first and second electronic components.
Abstract:
There is provided a semiconductor device. The semiconductor device of the present invention includes a semiconductor element and a metal buffer layer in an electrical connection to the semiconductor element. The metal buffer layer and the semiconductor element are in a connection with each other by mutual surface contact of the metal buffer layer and the semiconductor element. The metal buffer layer is an external connection terminal used for a mounting with respect to a secondary mount substrate, and the metal buffer layer serves as a buffer part having a stress-relaxation effect between the semiconductor element and the secondary mount substrate.
Abstract:
There is provided a light-emitting device comprising a light-emitting element, an element electrode, an extending-wiring electrode and a support. In the light-emitting device of the present invention, the light-emitting element is supported and secured by the support in such a form that a principal surface of the support and an active surface of the light-emitting element are approximately flush with each other. Further, the extending-wiring electrode is in a surface contact with the element electrode such that the extending-wiring electrode extends beyond a periphery of the light-emitting element to the principal surface of the support, wholly covering the active surface of the light-emitting element.
Abstract:
There is provided a method for manufacturing an electronic component package. The method includes the steps: (i) disposing a metal pattern layer on an adhesive carrier; (ii) placing at least one kind of electronic component on the adhesive carrier, the placed electronic component being not overlapped with respect to the metal pattern layer; (iii) forming a sealing resin layer on the adhesive carrier, and thereby producing a precursor of the electronic component package; (iv) peeling off the adhesive carrier of the precursor, whereby the metal pattern layer and an electrode of the electronic component are exposed at the surface of the sealing resin layer; and (v) forming a metal plating layer such that the metal plating layer is in contact with the exposed surface of the metal pattern layer and the exposed surface of the electrode of the electronic component.